返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一章 书架管理 下一页
三、悲壮的殉道者:希帕索斯悖论
    毕达哥拉斯是一位与孔子、释迦牟尼几乎同时代的古希腊著名的数学家和哲学家。在中学的平面几何中,有一个定理叫“毕达哥拉斯定理”,就是以他的名字命名的。

    毕达哥拉斯出生于爱琴海东面的萨摩斯。他十分好学,不愿跟随父亲学习雕刻指环的手艺,而是一心想拜有学问的人为师。于是,他周游各地,曾拜在阿那克西曼德、费雷居德等哲学家的门下,学习了不少哲学和自然科学的知识。后来,听说老师的许多知识都是从东方的巴比伦和埃及学来的,就动身到巴比伦和埃及求学。他曾在埃及居住了近22年,从埃及神庙的祭司那里了解了古埃及的数学、天文、宗教等方面的知识。在40岁左右时,毕达哥拉斯就已成为很有学问的人了。为了把所学知识传授给家乡的人民,他又回到了萨摩斯。由于政治观点不同,只得又离开家乡,前往希腊的移民地意大利南部的克罗通定居。他的后半生就是在这里度过的。

    为了能向人们传授知识,毕达哥拉斯开办了一个公众学校,到这里学习的曾达300多人。为便于组织学习,他把学生组成一个类似宗教团体富于神秘主义色彩的集团。例如。他制定了许多奇怪的戒律:不准用刀子拨火,不准坐在斗上,不准在大路上行走,房子里不准有燕子,不准养脚爪有钩的鸟等等。准备参加学习的人一开始不能和他见面,只能在门外听讲,听过一段时间后进行考试,及格的人才能与老师见面,成为正式的学生。毕达哥拉斯是这个团体的最高首领,主持他们的学习和生活。

    毕达哥拉斯学派提出一著名的观点:“一切都是数。”哲学的任务就是要发现世界的本原,而作为世界的本原应当是构成一切事物而又为一切事物所共同具有的东西,而数正是这种东西。因为不论什么事物,大到天体,小到尘埃,都有一定的长短、高低、大小、轻重等数量,没有数量的事物是不存在的。

    数既然是世界的本原,那么,它如何构成世界上的事物呢?毕达哥拉斯派解释说,作为世界本原的“数”是一种单位,它占有一定的空间,是有形的。数的开端是“1”,“1”就是一个小点(•)。虽说这种点非常小,但却是存在着的,正如阳光透进房间时我们看见的无数纤尘是存在的一样。“2”这个数是两点的排列,即成为一条线(—)。同样,“3”这个数是面(△),而“4”这个数就是体了(立体□)。数的排列到了“4”,就出现了有形体的事物。由这四个数就构成了土(立方体)、火(四面体)、气(八面体)、水(二十四面体)四大基本要素,这四种要素的不同排列组合就构成了世界上形形色色的具体事物。可见,一切事物都由数构成。数不仅构成了一切事物,而且,作为一种量,它也存在于所有的事物之中。任何事物之间都存在着一定的数量比例关系,正因为这种数量比例关系,世界才表现出其秩序和规律。不同的数量形成一定的比例,一定的比例就是事物之间的和谐。他们在研究音乐乐理的谐音时发现,产生各种谐音的弦的长度都成整数比(分数)。例如,两根绷得同样紧的弦,当它们的长度比为2:1时,就会产生相差八度的谐音,而当它们的长度比为3:2时,短弦发出的音比长弦发出的音要高五度。而如果三根绷得同样紧的弦,当它们的长度比为3:4:6时,就能得到和声的谐音。如果把“中音1”的弦长定为1,音阶与弦长就有如下妙不可言的分数关系:

    音阶  1  2  3  4  5  6  7  i

    弦长  (关系图无)

    另外,他们还对正方形的面积进行了研究,所得结果令他们更加兴奋。

    因为设一个正方形边长为a,那么,边长为2a、3a、4a、na(n为自然数)的正方形同a为边长的正方形面积之比分别为4:1、9:1、16
上一章 书架管理 下一页

首页 >悖论趣话简介 >悖论趣话目录 > 三、悲壮的殉道者:希帕索斯悖论