返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
第一节 关于纯粹理性独断的使用之训练
哲学中精密及明晰之定义,应在吾人研讨之终结时到达之,非以之开始者也。反之,在数学中,吾人并无先于定义之任何概念,概念自身由定义始授与吾人。职是之故,数学必常以(且常能)定义开始。

    (乙)数学的定义绝不能有误谬。盖因其概念由定义始授与吾人,其所包含者,除定义所欲由概念以指示之者以外,绝不含有其他任何事物。关于数学之内容,虽绝无不正确之事物能输入其中,但其所衣被之方式(即关于其精密),有时亦有缺陷(此种事例虽极少见)。例如圆之通常说明,“圆为曲线上所有之点与同一点(中心)等距离之曲线”,即具有缺点,盖“曲”之规定,实无须加入者也。盖若如是,则必须有自定义所演绎且易于证明之特殊定理,即“线中所有一切点如与同一点等距离,则其线为曲线”

    (无一部分为直者)云云之特殊定理。反之,分析的定义则陷于误谬之道甚多,或由于“以实际不属于其概念之特征加入之”,或由于缺乏“成为定义主要特征之周密”。后一缺点,由于吾人关于分析之完全程度绝不能十分保证所致。因此种种,定义之数学的方法,不容在哲学中模拟之也。

    二、公理。此等公理,在其直接正确之限度内,皆为先天的综合原理。顾一概念不能综合的而又直接的与其他概念相联结,盖因需要越出此二概念之外之第三者,作为吾人知识之媒介。是以哲学因其仅为理性由概念所知者,故其中所有之原理,无一足当公理之名。反之,数学能有公理,盖因其以构成概念之方法,能在对象之直观中先天的直接的联结对象之宾词,例如“三点常在一平面中”之命题是。但仅自概念而来之综合原理,则绝不能直接的正确,例如“凡发生之事象皆有一原因”之命题是。在此处我必须寻求一第三者,即经验中所有时间规定之条件;我不能直接仅自概念获得此种原理之知识。故论证的原理与直观的原理(即公理)全然不同;常须演绎。反之,公理则无须此种演绎,即以此故为自明的——哲学的原理不问其正确性如何之大,绝不能提出此种要求。

    因之,纯粹的先验的理性之综合命题,皆绝不能如“二二得四”命题之为自明的(但往往有人傲然主张此等命题有如是性质)。在分析论中,我曾以某种直观之公理加入纯粹悟性之原理表中;但其中所用之原理,其自身并非公理,仅用以标示“普泛所谓公理所以可能”之原理,至其自身则不过自概念而来之原理耳。盖数学之可能性,其自身必在先验的哲学中证明之。故哲学并无公理,且绝不能以任何此种绝对的态度制定其先天的原理,而必须甘愿承受由彻底的演绎以证明其关于先天的原理之权威。

    三、明示的证明。一必然的证明,在其为直观的之限度内,能名之为明示的证明。

    经验教吾人以事物之所有相,并不教吾人以“事物除此所有相以外不能别有其他”。因之证明之经验的根据,无一能成为必然的证明。乃至自论证的知识中所用之先天的概念,亦绝不能发生直观的正确,即直证的自明证据,固不问其判断在其他关系中如何必然的正确也。故仅数学具有“明示的证明”,盖因数学之知识,非自概念得来,乃自构成概念得来,即自“能依据概念先天的授与之直观”得来。乃至具有方程式之代数方式(正确之答案以及其证明,乃自此等方程式由归约所演绎之者),其性质固非几何学的,但仍为构成的(以此种学问特有方法之符号构成其概念)。系属此等符号之概念,尤其关于量之关系者,由符号在直观中呈现之;此种方法在其具有辅导的利益以外,由于使其符号一一呈现于吾人目前而得防免推论之误。顾哲学的知识必不能有此种利益,盖以其常抽象的(由概念)考虑普遍的事物,而数学则能具体的(在个别之直观中)同时又由纯粹先天的表象考虑普遍的事物,因此一切误谬立能自明。故我
上一页 书架管理 下一页

首页 >纯粹理性批判简介 >纯粹理性批判目录 > 第一节 关于纯粹理性独断的使用之训练