卷十三
则其极限在那里?关于这个,不仅该举出事实,还得说明理由。倘照有些人所说数以10为终,则通式之为数,也就仅止于10了;例如3为quot;人本quot;,又以何数为quot;马本quot;?作为事物之本的若干数列遂终于10。这必须是在这限度内的一个数,因为只有这些数才是本体,才是意式。可是这些数目很快就用尽了;动物形式的种类着实超过这些数目。同时,这是清楚的,如依此而以意式之quot;3quot;为quot;人本quot;,其它诸3亦当如兹(在同数内的诸)亦当相似),这样将是无限数的人众;假如每个3均为一个意式,则诸3将悉成quot;人本quot;,如其不然,诸3也得是一般人众。又,假如小数为大数的一部分(姑以同数内的诸单位为可相通),于是倘以quot;本4quot;为quot;马quot;或quot;白quot;或其它任何事物的意式,则若人为2时,便当以人为马的一个部分。这也是悖解的,可有10的意式,而不得有11与以下各数的意式。又,某些事物碰巧是,或也实际是没有通式的;何以这些没有通式?我们认为通式不是事物之原因。又,说是由1至10的数系较之本10更应作为实物与通式,这也悖解。本10是作为整体而生成的,至于1至10的数系,则未见其作为整体而生成。他们却先假定了1至10为一个完整的数系。至少,他们曾在10限以内创造了好些衍生物——例如虚空,比例,奇数以及类此的其它各项。他们将动静,善恶一类事物列为肇始原理,而将其它事物归之于数。所以他们把奇性合之于1;因为如以3作奇数之本性则5又何如?
又,对于空间量体及类此的事物,他们都用有定限的数来说明;例如,第一,不可分线,其次2,以及其它;这些都进到10而终止。
再者,假如数能独立自存,人们可以请问那一数目为先,——1或3或2?假如数是组合的,自当以1为先于,但普遍性与形式若为先于,那么列数便当为先于;因为诸1只是列数的物质材料,而数才是为之作用的形式。在某一涵义上,直角为先于锐角,因为直角有定限,而锐角犹未定,故于定义上为先;在另一涵义上,则锐角为先于,因为锐角是直角部分,直角被区分则成诸锐角。作为物质,则锐角元素与单位为先于;但于形式与由定义所昭示的本体而论,则直角与quot;物质和形式结合起来的整体quot;应为先于;因为综合实体虽在生成过程上为后,却是较接近于形式与定义。那么,1安得为起点?他们答复说,因为1是不可区分的;但普遍性与个别性或元素均不可区分。而作为起点则有quot;始于定义quot;与quot;在时间上为始quot;的分别。那么,1在那一方面为起点?上曾言及,直角可被认为先于锐角,锐角也可说是先于直角,那么直角与锐角均可当作1看。他们使1在两方面都成为起点。
但这是不可能的。因为普遍性是由形式或本体以成一,而元素则由物质以成一,或由部分以成一。两者(数与单位)各可为一——实际上两个单位均各潜在(至少,照他们所说不同的数由不同种类的单位组成,亦就是说数不是一堆,而各自一个整体,这就该是这样),而不是完全的实现。他们所以陷入错误的原因是他们同时由数理立场又由普遍定义出发,进行研究,这样(甲)从数理出发,他们以1为点,当作第一原理;因为单位是一个没有位置的点。(他们象旁的人也曾做过的那样,把最小的部分按装成为事物。)于是quot;1quot;成为数的物质要素,同时也就先于2;而在2当作一个整数,当作一个形式时,则1又为后于。然而,(乙)因为他们正在探索普遍性,遂又把quot;1quot;表现为列数形式涵义的一个部分。但这些特性不能在同时属之同一事物。