返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
卷十三
区分的(否则所取的这一部分将仍还是众,而这将是可区分的),而quot;单与众quot;就不成其为两要素了;因为各个单位不是从quot;单与众quot;创生的。(乙)执持这种主张的人不做旁的事,却预拟了另一个数;因为它的不可区分物所组成的众就是一个数。

    又,我们必须依照这个理论再研究数是有限抑无限的问题。起初似乎有一个众,其本身为有限,由此quot;有限之众quot;与quot;一quot;共同创生有限数的诸单位,而另有一个众则是绝对之众,也是无限之众;于是试问用那一类的众多作为与元一配合的要素?人们也可以相似地询问到quot;点quot;,那是他们用以创制几何量体的要素。因为这当然不是惟一的一个点;无论如何请他们说明其它各个点各由什么来制成。当然不是由quot;本点quot;加上一些距离来制作其它各点。因为数是不可区分之一所组成,但几何量体则不然,所以也不能象由众这个要素的不可区分之诸部分来制成一〈单位〉那样,说要由距离的不可区分之诸部分来制成点。

    于是,这些反对意见以及类此的其它意见显明了数与空间量体不能脱离事物而独立。又,关于数论各家立说的分歧,这就是其中必有错误的表征,这些错处引起了混乱。那些认为只有数理对象能脱离可感觉事物而独立的人,看到通式的虚妄与其所引起的困惑,已经放弃了意式之数而转向于数学之数。然而,那些想同时维持通式与数的人假设了这些原理,却看不到数学数存在于意式数之外,他们把意式数在理论上合一于数学数,而实际上则消除了数学数;因为他们所建立的一些特殊的假设,都与一般的数理不符。最初提出通式的人假定数是通式时,也承认有数理对象存在,他是自然地将两者分开的。所以他们都有某些方面是真确的,但全部而论都不免于错误。他们的立论不相符合而相冲突,这就证实了其中必有不是之处。错误就在他们的假设与原理。坏木料总难制成好家具,爱比卡包谟⑥说过,quot;才出口,人就知道此言有误quot;。

    关于数,我们所提出的问题和所得的结论已足够(那些已信服了的人,可在后更为之详解而益坚其所信,至于尚不信服的人也就再不会有所信服)。关于第一原理与第一原因与元素,那些专谈可感觉本体的各家之说,一部分已在我们的物学著述中说过,一部分也不属于我们现在的研究范围;

    但于那些认为在可感觉物体以外,还有其它本体的诸家之说,这必需在讨论过上述各家以后,接着予以考虑。因为有些人说意式与数就是这类〈超感觉〉本体,而这些要素就是实在事物的要素与原理,关于这些我们必须研究他们说了些什么,所说的内容器实义又如何。

    那些专主于数而于数又主于数学之数的人,必须在后另论;但是关于那些相信意式的人,大家可以同时观测他们思想的途径和他们所投入的困惑。他们把意式制成为quot;普遍quot;,同时又把意式当作可分离的quot;个别quot;来处理。这样是不可能的,这曾已为之辩明。那些人既以本体外离于可感觉事物,他们就不得不使那作为普遍的本体又自备有个体的特性。他们想到了可感觉世界的形形色色,尽在消逝之中,惟其普遍理念离异了万物,然后可得保存于人间意识之中。我们先已说过苏格拉底曾用定义〈以求在万变中探取其不变之真理,〉启发了这样的理论,但是他所始创的quot;普遍quot;并不与quot;个别quot;相分离;在这里他的思想是正确的。结果是已明白的了,若无普遍性则事物必莫得而认取,世上亦无以积累其知识,关于意式只在它脱离事物这一点上,引起驳议。可是,他的继承者却认为若要在流行不息的感觉本体以外建立任何本体,就必需把普遍理念脱出感
上一页 书架管理 下一页

首页 >形而上学简介 >形而上学目录 > 卷十三