返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
卷十三
样,它们创生quot;本8quot;中的两4。因此,第一个2若为一意式,这些2也得是某类的意式。同样的道理适用于诸1;因为quot;第一个2quot;中的诸1,跟着第一个2创生4而入于本4之中,所以一切1都成意式,而一个意式将是若干意式所组成。所以清楚地,照这样的意式之出于组合,若说有动物的诸意式时,人们将可说动物是诸动物所组成。

    总之,分化单位使成不同品种之任何方式均为一荒唐之寓言;我所说寓言的意义,就是为配合一个假设而杜撰的说明。我们所见的一〈单位〉无论在量上和在质上不异于别个一〈单位〉,而数必须是或等或不等——一切数均应如此,而抽象〈单位〉所组成的数更应如此——所以,凡一数若既不大于亦不小于另一数,便应与之相等;但在数上所说的相等,于两事物而言,若品种不异而相等者则谓之相同。倘品种有异,虽quot;本10quot;中之诸2,即便它们相等,也不能不被分化,谁要说它们并不分化,又能提出怎样的理由?

    又,假如每个1加另1为2,从quot;本2quot;中来的1和从quot;本3quot;中来的1亦将成2。现在(甲)这个2将是相异的1所组成;(乙)这10个2对于3应属先于抑为后于?似乎这必是先于;因为其中的一个单位与3为同时,另一个则与2为同时。于我们讲来,一般1与1若合在一起就是2,无论事物是否相等或不等,例如这个善一和这个恶一,或是一个人和一匹马,总都是quot;2quot;。

    假如quot;本3quot;为数不大于2,这是可诧异的;假如这是较大,那么清楚地其中必有一个与2相等的数,而这数便应与quot;本2quot;不相异。但是,若说有品种相异的第一类数与第二类数这就不可能了。

    意式也不能是数。因为在这特点上论,倘真以数为意式,那么主张单位应各不同的人就该是正确的了;这在先曾已讲过。通式是整一的;但quot;诸1quot;若不异,quot;诸2quot;与quot;诸3quot;亦应不异。所以当我们这样计点——quot;1,2quot;……他们就必得说这个并不是1个加于前一个数;因为照我们的做法,数就不是从未定之2制成,而一个数也不能成为一个意式;因为这样一个意式将先另一个意式存在着而所有诸通式将成为一个通式的诸部分。这样,由他们的假设来看,他们的推论都是对的,但从全局来看,他们是错的;他们的观念为害匪浅,他们也得承认这种主张本身引致某些疑难,——当我们计点时说quot;1,2,3quot;究属是在一个加一个点各数呢,还是在点各个部分呢。但是我们两项都做了;所以从这问题肇致这样重大的分歧,殊为荒唐。

    章八

    最好首先决定什么是数的差异,假如一也有差异,则一的差异又是什么。单位的差异必须求之于量或质上;单位在这些上面似乎均有差异。但数作为数论,则在量上各有差异。

    假如单位真有量差,则虽是有一样多单位的两数也将有量差。

    又在这些具有量差的单位中是那第一单位为较大或较小,抑是第二单位在或增或减?所有这些都是不合理的拟议。它们也不能在质上相异。因为对于诸单位不能系以属性;即便对于列数,质也只能是跟从量而为之系属。又,1与未定之2均不能使数发生质别,因为1本无质而未定之2只有量性;这一实是只具有使事物成为多的性能。假如事实诚不若是,他们该早在论题开始时就有说明,并决定何以单位的差异必须存在,他们既未能先为说明,则他们所谓差异究将何所指呢?

    于是明显地,假如意式是数,诸单位就并非全可相通,在〈前述〉两个方式中也不能说它们全不相通。但
上一页 书架管理 下一页

首页 >形而上学简介 >形而上学目录 > 卷十三