返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一章 书架管理 下一页
第六章 数学中的逻辑技巧
    我认为大学中有院系之分是必要的,但其结果是很不幸的。逻辑被人看做是哲学的一个分枝,而且曾为亚里士多德所论述过,因此大家就认为这一个科目只有熟悉希腊文的人才能讨论。结果,数学只被不懂逻辑的人所讨论。自亚里士多德和欧几里德时代到本世纪,这种分裂是有很大的损害的。

    在一九○○年巴黎开国际哲学会的时候,我意识到逻辑改革对于数理哲学的重要性。

    我是因为听了来自突林的皮亚诺和到会的一些别的哲学家的讨论才认识到了这一点。在此以前,我不晓得他曾做过一些什么。但是我深深感到,在每项讨论的时候,他比别人更精确,在逻辑上更严密。我去见他,并对他说:“我想把你所有的著作都读一下,你身边有吗?”他有。我立刻把他的著作都读了。正是这些著作促进了我对于数学原理有我自己的主张。

    数理逻辑并不是一个新的学科。莱布尼茨曾经尝试了一下,但是由于敬重亚里士多德,而受到了阻碍。布尔在一八五四年发表了他的《思想律》,弄出来一整套计算法,主要是讲类的包含。皮尔斯曾经开创了一种关系逻辑。施勒德曾发表过一部著作,分三大卷,概述了以前的成果。怀特海在他的《普遍代数学》的第一部分里专论布尔的计算法。上面所说的这些著作大多数我那时是熟悉的。但是我不觉得这些著作对于弄明白算术的基本原理有什么帮助。正在我去巴黎之前我关于这一个题目所写的文章的原稿,我现在还有,我现在又把它读了一遍,我发现,关于算术对于逻辑所提出来的问题,这篇文章连初步的解决都没有做到。

    皮亚诺所给我的启发主要是来自两个纯乎是技术上的进步。如果一个人没有象我那样花过若干年的时间想法了解算术,他很不容易知道这两种进步的重要性。这两种进步都是弗雷格在更早一个时期取得的。我疑心皮亚诺未必知道这一点,而且我也是到后来才知道的。虽然有困难,可是我一定尽我的能力来解释这两种进步是什么,以及为什么很重要。我先讲这两种进步是什么。

    第一种进步是把“苏格拉底是不免于死的”这种形式的命题和“一切希腊人是不免于死的”这种形式的命题分开。亚里士多德和人所共认的关于三段论式的学说(康德以为这种学说永远不能再有改进)认为这两种形式的命题是没有区别的,要不然,总也没有什么大的不同。但是,事实上,若看不出这两种形式是完全不同,不论是逻辑还是算术,都不会有长足的进展。“苏格拉底是不免于死的”把一个宾辞加于一个是人名的主辞上。“一切希腊人是不免于死的”表示两个宾辞之间的关系,也就是,“希腊人”和“不免于死”,把“一切希腊人是不免于死的”全部说出来是,“就x的一切可能有的值来说,如果x是希腊人,x是不免于死的”。这里不是一个主辞—宾辞的命题,而是把两个命题函项连结起来。如果给x这个变项指定一个值,则两个命题函项的每一个就变成一个主辞—宾辞的命题。“一切希腊人是不免于死的”这个命题并不是单讲希腊人怎么样,而是一个讲宇宙中一切事物的命题。若x是希腊人,“如果x是希腊人,x就是不免于死的”这个命题固然能够成立,若是x不是希腊人,这个命题也一样能够成立。

    实在说来,即使希腊人完全不存在,这个命题也能成立。“一切小人国的人是不免于死的”是能成立的,虽则小人国的人是不存在的。“一切希腊人是不免于死的”之所以不同于“苏格拉底是不免于死的”这个命题,是它并没有指明哪一个人,而仅仅是表示宾辞与宾辞的连结。它之能够成立不能用枚举来证明,因为(再说一遍)所说的这个x并不限于是希腊人的那些x,而是及于全宇宙。但是,虽然这个命题不能用枚举来证明,却能为人所理解。我不知道是否有长翅膀的马,这样的马我确是从来没有见过
上一章 书架管理 下一页

首页 >我的哲学的发展简介 >我的哲学的发展目录 > 第六章 数学中的逻辑技巧