返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
第八章 《数学原理》:数学方面
;(2)由一些项而成的类,对于这些项一个既定的x项有R关系;(3)关系的“范围”,这个范围是由一个类而成,这个类中所有的项对于某种什么东西有R关系;(4)R的“相反范围”,这个范围是由一个类而成,某种什么东西对于这个类中所有的项有R关系;(5)R的“领域”,这个领域是由上面所说的那种“范围”和“相反范围”而成;(6)一种R关系的“反面”,这是x和y之间有R关系的时候,y和x之间所具的一种关系;(7)R和S两种关系的“关系产物”,这是有一个y中项的时候,x和z之间的一种关系,x对于y有R关系,y对于z有S关系;(8)复数,界说如下:有既定的某a类,我们形成一个由若干项而成的类,所有这些项对于a的某项有R关系。我们可以看一看人与人的关系来作以上各种概念的例子。举例来说,假定R是父母与子女的关系。那么,(1)就是y的父母;(2)是x的子女;(3)是所有那些有子女的人的类;(4)是所有那些有父母的人的类,那就是说,除了亚当和夏娃以外,每人都包括在内;(5)“父母”关系的领域包括每个人,他或是某人的父母,或是某人的子女;(6)“的父母”这种关系的反面是“的子女”那么一种关系;(7)“祖父母”是父母与父母的关系产物,“弟兄或ae?妹”是“子女”与“父母”的关系产物,“堂兄弟或弟兄或ae?妹”是孙和祖父母的关系产物,余可以类推;(8)“伊通学院学生的父母”是按这一个意义来说的复数。

    不同种类的关系有不同种类的用处。我们可以先讲一种关系,这种关系产生一种东西,我名之曰“叙述函项”。这是最多只有一项对于既定的一项所能有的一种关系。这种关系产生用单数的“the”这个字的短语,如“thefatherofx”(x的父亲),“thedou-bleofx”(x的两倍),“thesineofx”(x的正弦),以及数学中所有的普通函数。这种函项只能由我名之曰“一对多”的那种关系产生出来,也就是最多一项对于任何别的一项所能有的那种关系。举例来说,如果你正在谈一个信基督教的国家,你可以说“x的妻”,但是如果用于一个一夫多妻制的国家,这一个短语的意思就不明确了。在数学里你可以说“x的平方”,但是不能说“x的平方根”,因为x有两个平方根。前面所列的表里的“范围”、“相反范围”和“领域”都产生叙述函项。

    第二种极其重要的关系是在两个类之间建立一种相互关系的那种关系。这种关系我名之曰“一对一”的关系。这是这样一种关系,在这种关系中,不仅最多只有一个对于一个既定的y有R关系的x,而且最多也只有一个y,对于这个y一个既定的x有R关系。举一个例子:禁止一夫多妻的婚姻。

    凡是在两个类之间有这样一种相互关系存在,这两个类的项的数目就是一样的。举例来说:不用计算我们就知道妻的数目和夫的数目是一样的,人的鼻子的数目和人的数目是一样的。有一种特殊形式的相互关系,这种关系也是极其重要的。

    这种相互关系的起因是:有两个类是P和Q两个关系的领域,并且在它们之间有一种相互关系,凡是两个项有P这种关系的时候,它们的相关者就有Q这种关系,反之亦然。结过婚的官吏的位次和他们的妻的位次就是一个例子。如果这些妻不和贵族有关系,或者如果这些官吏不是主教,这些妻的位次就和丈夫的位次是一样的。这种产生相互关系的东西名曰“次序的相互关系产生者”,因为不管在P领域中的各项有怎么一种次序,这种次序总保存在Q领域中的它们的相关者中。

    第三种重要的关系类型是产生系列的一种关系。“系列”是一个旧的,人人都熟悉的名辞,但我认为我是给这个辞以一个确切意义的第一个人。一个系列
上一页 书架管理 下一页

首页 >我的哲学的发展简介 >我的哲学的发展目录 > 第八章 《数学原理》:数学方面