第十章 维根斯坦的影响
《数学原理》最初不很受欢迎。大陆上的数理哲学分为两派,形式主义者和直观主义者。这两派都完全否认数学是从逻辑出来的,并且利用矛盾来证明他们的否认是正当的。
以希尔伯特为首的形式主义者主张,算术上的符号只是纸上的一些记号,全无意义,算术是由类乎下棋的规则的一些任意的规则而成,按照这些规则,可以把那些记号加以操作使用。这个学说有着避免一切哲学争论的有利条件,但它也有不能解释数字在计算中应用的不利条件。如果把○这个符号看做是指一百或一千或任何别的有限数,则形式主义者所提出的一切使用规则也就得到了证实。这个学说无法解释象“这间屋子里有三个人”或“有十二个使徒”这样一些简单的命题是什么意思。对于从事计算,这个学说是完全够用的,但是在数的应用上则是不够的。既然重要的是数的应用,形式主义者的这个学说不能不看做是一种不满人意的逃避。
以伯劳威为首的直观主义者的学说须更认真地讨论一下。这个学说的核心是否定排中律。这个学说认为,如果有一个方法能确定一个命题是正确或错误,那个命题才能算是正确或错误。常见的例子之中有一个就是这样一个命题:“在π的小数计算中有三个连续的七”。就已经求出来的π的值来说,并没有三个连续的七,但是没有理由假定在后来的一个地方这就不会出现。如果今后看来果真有一个地方有三个连续的七出现,问题就解决了,但是,如果这样一个地方没有达到,那并不能证明后来不会有这样一个地方。所以,虽然我们也许完全能证明是有三个连续的七,我们却永远不能证明没有。这个问题对于分析是很重要的。不尽的小数有时候是按一条定律来进行,这条定律使我们能够随意计算多少项。
但有时(我们必须这样假定)它们不按任何定律来进行。根据一般承认的原则,第二种情形比第一种情形不知要普遍多少倍。而且,如果不承认“不法的”这样的小数,则整个实数学说就塌台了,并且微积分以及几乎整个高等数学也就随之瓦解。伯劳威面对这一灾难,毫不畏缩,但是大多数数学家认为是受不了的。
这个问题的普遍性比上面那个数学例子所表现的要大得多。问题是:“如果没有方法来决定一个命题正确或错误,说这个命题正确或错误有没有任何意义?”或者用另一个方式来说:“‘真’和‘能证实’应该是一回事吗?”我认为我们不能说这是一回事,否则我们只得作一些粗劣而无理的悖论。请以下边这个命题为例:“公元一年的一月一日曼赫坦岛上下了雪”。我们想不出有什么法子能够看出这个命题是正确或错误,但是主张这个命题不正确也不错误,看来是荒谬的。关于这个问题我现在不想再说下去,因为我在《对意义与真理的探讨》的第二十和第二十一章中曾详细讨论过,关于《对意义与真理的探讨》一书我在本书的后边一章还要讲到。同时,我想直观主义者的学说是不能不加以拒斥的。
直观主义者和形式主义者都是从外面来攻击《数学原理》的学说,而击退他们的攻击好象并不十分困难。维根斯坦及其学派的批评就另是一回事了。这些批评是来自里面,十分值得尊重。
维根斯坦对我有过深远的影响。我渐渐觉得,在很多点上我和他的意见相合是过了分。可是我不能不先解释一下争论之点是什么。
维根斯坦对于我的影响是分两起来的:第一篇是在第一次大战之前;第二篇是大战一完他就把他的《逻辑哲学论》的原稿寄给我。他后来的学说,在他的《哲学研究》中所讲的,丝毫没有影响我。
在一九一四年之初,维根斯坦给了我一篇用打字机打好的短文章,里边是一些论各种逻辑问题的笔记。这篇文章,和多次的谈话,影响了我在战时那几年的思想。战时他在奥国的军队里,因此