第六章 大脑“达尔文机”的运作机制
除非大脑已经死亡,脑的灰质实际上并不是灰色的。在活的大脑中,脑灰质有丰富的血液供应。试想一下在雷雨后河流呈现的略带红的灰褐色,你便能对活动中的“灰质” 的色彩有正确的印象。
关于联想记忆的“汇聚区”的观点所产生的问题是:需要使一种时空密码在皮层内的长距离传输过程中(例如经过胼胝体从左脑传至右脑)保持同一。因缺乏精细的拓扑映射(轴突终未总是呈扇形展开的,不是终止在单一点)而产生的时空模式的畸变,或在时间上的参差(传导速度并不均一),对于单向的信息流也许并不重要,在那种情况下,只是在通路中一种任意的密码为另一种任意的密码所取代而已。
在上一章中我们谈到关于人工传真的论据:在脑中的通讯需要模式的远程复制。
所有这一切取决于你对组构图的满意程度。有些人并不想了解得更多,我们说: “忽略掉细节,有一幅实施概图就可以了”。但是这一章并不是谈上一章所略去的细节,它是从一个不同的角度来写的,以“自下而上”的方式来阐述,而并非从推演出的原理出发。
因此,皮层间的精细性本身是从原始语言向真正语言飞跃的一个候选者(虽然你仍然需要语义结构层次上的许多小规则)。诚然,向任意密码传送的转换可能同时使用 “通用语法”的两个主要创新点——嵌入结构和远程联系。这样,我们现在有了几个候选对象,即达尔文机和相干的皮层间投射等,它们可能已经推进了智力和语言的发展,使不经常作出创新的直立人文化,在约25万年前进化为人类不断变化的文化。
因此,“黄色”的三角形阵列可能不比接收黄香蕉象的视皮层大很多。对线段朝向敏感的神经元平的可能也是同一回事:几个神经元进入同步,参加已定调的合唱,从而形成其中心在另处的一个0.5毫米的三角形阵列;对于香蕉的每一种独立地被察觉的特征,可能会存在一个不同的三角形阵列,它不一定在皮层上跨越相同的距离。俯视被展平的皮层,假设当一个冲动发放时一个微型柱会发亮,我们将会看到一群闪烁的光点。
如果我们把视野局限于05毫米的一个圆圈,我们不大会看到多少同步活动,有一个对“黄色”敏感的神经元每秒放电几次,另一个对“线”敏感的神经元每秒放电十几次,等等。但是如果把我们的视野增宽至几个毫米,那我们一忽儿看到几个点发亮,过一忽儿又是另一些点发亮。每一群发亮的点本身会形成一个三角形阵列。总起来看,各种阵列组成一个“香蕉委员会”。
这意思并不很大。但这些突触是皮层浅表层中的谷氨酸突触,它01具有NMDA通道,可使钠、钾进入下游神经元。这本身也不是那么重要。
某些区域有大的“收信箱”和小的“发信箱”,就像在编辑部处理读者来信的书桌上所见的信箱一样。除了这种堆积的水平组构之外,还有一组很巧妙的纵向联系,就像是报纸上的纵栏。
但是,误差校正机制提供了将任意时空模式沿皮层间轴突束传送并一次成功的可能性,因此传送便不再限于某些特殊情况下的图形,这些图形虽在空间和时间上发生“畸变”,但已为目标皮层识别为有意义的信息。这种皮层间相干性意味着新的关联是可能得到传送的;目标皮层能以相似的误差校正把它送回,让它在起源皮层中被自动识别,而毋需对一种发生两次畸变的图形进行调整,然后构建与原始时空放电模式等价的模式。
在轴突的一端是球形、膨大的神经元的细胞体,包含细胞核。细胞日常运转和维持所用的DNA模板即在其中。有许多树状分支从细胞体伸展出来,称为树突。神经元的这一部分没有白色的髓磷脂,因此它们大量集合起来便呈灰色。神经元轴突的另一端通常与一个下游神经元的树突相接