第六章 大脑“达尔文机”的运作机制
另外两个独特之处,均与表层锥体神经元彼此间形成的连接有关。平均而言,一个皮层神经元在03毫米半径的范围内所接触的神经元少于总数的10%,但是任何表层锥体神经元的兴奋突触中有约70%来自0.3毫米范围内的其他锥体神经元,因此表层锥体神经元可以说具有一种异常强烈的相互兴奋的倾向。对于神经生理学家来说,这种情况使他们心里直发毛,因为这是一种极不稳定、易于产生强烈振荡的装置,除非加以小心的调节。
我们的知性借先验图式的原理理解现象世界……这是一种深蕴于人类心灵中的技能,我们很难揣测自然界在此采用的秘诀。 </p>
方式关联起来,也和听到梳子这个读音或听到拨弄梳齿时所产生的声音的大脑密码相关联起来。不管是以上述形式中的哪一种出现,你总是能确定这是一把流子。因此,已假设在皮层中可能有一些特化的部位,我们称之为联想性记忆汇聚区,来自不同感觉模态的信号在那里汇聚起来。在产生信号这一方,在发“梳子”这个词的音和用梳子梳理头发时,你也已经把这两者的大脑密码关联起来了。这样,在词“梳子”所引起的感觉和各种运动表现之间也就联系起来了,我们可以指望发现十几种与梳子关联的不同的皮层密码。
综观皮层神经解剖学研究的编年史,这种跳跃式空间配置模式是绝无仅有的。我们对它的功能尚不知晓,但这肯定会使你想到,以0.5毫米相间隔的皮层区有时可能干着同样的事情,其活动模式是重复的,就像墙纸重复的图案一样。
如果这种空间模式较稀疏,几个大脑密码(如“苹果”和“柑橘”的密码)能够重叠起来使你形成一个范畴(如“水果”)。如果你试图把点矩阵打印机打印的几个字母重叠起来,你所得到的是一个墨团。但是,如果矩阵点子稀疏,你有可能把一个一个字母复原起来,因为它们每一个都产生十分清晰可辨的时空模式。因此,这类密码也能方便地用来形成能分解成若干单元的各种范畴,正像叠加的旋律常常能单个听出来一样。由于这种远程复制的特点,你能形成多模范畴,如“梳子”的所有内涵。
轴突并非光纤,因为在每一端都有许多细芽。真实的轴突并不终止于一点,而是展开于大型柱那么宽。真实的轴突束也不像一根相干的光纤束,与相邻的互不干扰,它们可以彼此交混起来从而使一个点走入叉路,其在另一端的终止位置发生偏移。真实的轴突的传导速度也会改变,一起开始的冲动可以在不同时间到达,使时空模式发生畸变。
实现所有这些关联功能的皮层区域,是白质这块蛋糕上的薄薄的一层糖霜。大脑皮层只有2毫米厚,但它具有深深的皱褶。新皮层有极均匀的神经元密度(除了初级视皮层的一层外)。不管是语言皮层还是运动皮层,如果你在皮层表面做一个网格,每平方毫米的新皮层约有148000个神经元。但是,若从侧面看,在2毫米深度的各层,可见某些区域上的差异。
进而,标准跳跃间距意味着有可能作往返传输,这是早期神经生理学家所假设的那种回响式回路。两个间隔0.5毫米的神经元能相互维持活动的持续进行。神经元在一次冲动后有一个称为不应期的死区,不应期持续l一2毫秒,在这一时间内几乎不可能引发另一次冲动。0.5毫米所需的传导时间约为1毫秒,然后突触延摘再使传递慢半个毫秒。这样,如果在两个神经元之间的连接足够强,你能想象,第二个神经元的冲动退回第一个神经元的时间,大抵与它恢复其产生另一冲动的时间相近。但是,神经元间的连接通常并不足够强,因此这样快速的放电(即使起动了)也不能保持下去(但对于心脏,相邻细胞间的连接强度确实足够强,当损伤减慢了传导时间时,循环性的重复兴奋是一种重要的病理现象)。