第三章 不朽的螺旋圈
我们把其中一个称为另一个的等位基因。为了我们的目的,等位基因同竞争对手是同义词。试把建筑师一卷一卷的蓝图想象成一本本的活页夹,其中的活页能够抽出并能互相交换。每一本卷13必然会有一张第六页,但好几张第六页都能进入活页夹,夹在第五页同第七页之间。一个版本写着quot;蓝色眼睛quot;;另一个版本可能写着quot;棕色眼睛quot;:整个种群中还可能有其他一些版本写出其他的颜色如绿色。也许有六个可供替换的等位基因占据着分散于整个种群里的第十三条染色体的第六页的位置。每人只有两卷卷13染色体。因此,在第六页的位置上最多只能有两个等位基因。如一个有蓝眼睛的人,他可能有同一个等位基因的两个拷贝,或者他可以在整个种群里的六个可供替换的等位基因当中任选两个。
当然你不可能真的到整个种群的基因库里去选择自己的基因。任何时候,全部基因都在个体生存机器内紧密地结合在一起。我们每人在胚胎时就接受了全部基因,对此我们无能为力。然而从长远来讲,把整个种群的基因统称为基因库还是有意义的。事实上这是遗传学家们所用的一个专门术语。基因库是一个相当有用的抽象概念,因为性活动把基因混合起来,尽管这是一个经过仔细安排的过程。
特别是类似从活页夹中把一页页、一迭迭抽出并相互交换的情况的确在进行,我们很快就会看到。 我已经叙述了一个细胞分裂为两个新细胞的正常分裂情况。每个分裂出来的细胞都接受了所有46条染色体的一份完整拷贝。这种正常的细胞分裂称为有丝分裂。但还有一种细胞分裂叫作减数分裂。减数分裂只发生在性细胞即精子和卵子的产生过程中。精子和卵子在我们的细胞中有其独特的一面,那就是它们只有23条,而不是46条染色体。这个数字当然恰巧是46的一半。这对它们受精或授精之后融合在一起以便制造一个新个体是何等的方便!减数分裂是一种特殊类型的细胞分裂,只发生在精巢和卵巢中。在这个过程中,一个具有完整的双倍共46条染色体的细胞,分裂成只有单倍共23条染色体的性细胞(皆以人体的染色体数目为例)。
一个有23条染色体的精子,是由精巢内具有46条染色体的一个普通细胞进行减数分裂所产生。到底哪23条染色体进入一个精子细胞呢?一个精子不应得到任何的23条染色体,这点显然很重要,也即它不可以有两个拷贝的卷13,而卷17却一个拷贝也没有。一个个体可以把全部来自其母亲的染色体赋予他的一个精子(即卷1b,卷2b,卷3b……卷23b),这在理论上是可能的。在这种不太可能发生的情况中,一个以这类精子受孕的儿童,她的一半基因是继承其祖母的,而没有继承其祖父的。但事实上这种总额的全染色体的分布是不会发生的。实际情况要复杂得多。请不要忘记,一卷卷的蓝图(染色体)是作为活页夹来看待的。在制造精子期间,某一卷蓝图的许多单页或者说一迭一迭的单页被抽出并和可供替换的另一卷的对应单页相互交换。因此,某一具体精子细胞的卷 1的构成方式可能是前面六十五页取自卷1a,第六十六页直到最后一页取自卷 1b。这一精子细胞的其他22卷以相似的方式组成。因此,即使一个人的所有精子的23条染色体都是由同一组的46条染色体的片断所构成,他所制造的每一个精子细胞却都是独特的。卵子以类似的方式在卵巢内制造,而且它们也各具特色,都不相同。
实际生活里的这种混合构成法已为人们所熟知。在精子(或卵子)的制造过程中,每条父体染色体的一些片断分离出来,同完全相应的母体染色体的一些片断相互交换位置(请记住,我们在讲的是最初来自制造这个精子的某个体的父母的染色体,也即由这一精子受精最终所生的儿童的祖父母的染色体)。这种