第二章 走入基因-1
基因的这种不稳定性可能与癌症和传染性疾病也有很大关系。麦克琳托克作为首次发现基因不稳定性的人,于1983年获得了诺贝尔生理学及医学奖。(赖立辉)
19世纪后半叶,在细胞学说的启迪下,人们认识到研究细胞的结构和生理,是阐明生命现象(包括生殖和遗传在内)的捷径,此外,随着物理学和化学的发展,当时已有较好的显微镜、切片机和各种化学染料为细胞学的研究提供了十分有利的条件。于是,生物学家相继发现和描述了细胞的有丝分裂和生殖细胞在成熟过程中的减数分裂等。这些发现把人们的注意力集中到染色体上来。早在1882年,德国细胞学家弗鲁门(·Flermming,1843—1915)在研究细胞分裂时,发现核中有容易染色的部分,并把它称之为染色质。其后,1888年,德国解剖学家沃德耶(.aldewr,1836一1921)正式把弗鲁门发现的染色质称之为染色体。从此之后,有关染色体的研究报告层出不穷。人们发现同一物种所有个体的染色体对数是相同的、稳定的,并且在许多生物体同一个核内不同染色体对的大小、形态也有明显的区别,从而提出了染色体的个性和连续性的假设。
特别是染色体在细胞分裂过程中的行为更引人注目。它使人们联想到遗传基因的变化和高等动植物在有性生殖过程中染色体的行为是平行的或一致的。比如说,基因的体细胞中是成对的,染色体在体细胞中也是成对的;基因在生殖细胞中是成单的,染色体在生殖细胞中也是成单的;不同对的基因可以在分离过程中自由组合,同源染色体的减数分裂过程中也恰好是随机分配的。就是说,基因的分离和分配,对应于减数分裂期间生殖细胞内染色体的分配和四分体的形成。按此理解,杂种后代(F;)在形成配子时,同源染色体分离,产生了数目相等的两类配子,一类只含基因A,另一类只含基因a,假定所有配子受精的税率相等。这些配子的接将随机结合,那么会产生4种组合;即AA、ZAa和aa。当A代表显性,a代表隐性时,这就表现为孟德尔的分离定律。这样,孟德尔所发现的遗传定律,就可以从生殖细胞形成期间染色体的行为来理解。正如美国细胞学家萨顿(.Sutton,1877-1916)在他的《遗传和染色体》(1903年)一文中所概括的:
父本和母本的染色体联合成对及它们在减数分裂中的分离构成孟德尔定律的基础。就是说,在雌雄配子形成和受精过程中,染色体的行为与孟德尔遗传因子(即基因)的行为是平行的,只要假定基因是在染色体上,分离定律和自由组合定律的表现就会得到解释。
萨顿的概括在当时并没被多数人认同。持不同意见的人认为,基因和染色体的那种相互关系最多不过是彼此同时发生而已,把孟德尔的基因同染色体相提并论显得有点似是而非。美国的生物学家摩尔根呼·h·haap,1866-1945)就持有这种看法。因此他试图用实验来解决这个问题。1910年,他选用果蝇作材料进行性别决定的遗传学实验。
一天,他偶然发现在培养瓶里有一只雄果蝇的身上出现了一个细小而明显的变异,即它与通常的红眼果蝇不同,而是具有白眼性状。接着,摩尔根把那只雄果蝇同它的红眼姊妹一起饲养,看看会有什么变化,结果他发现所有的杂种一代都是红眼的。如果将FI近交(指亲缘关系极近的个体之间杂交),那么所产生的马,有红眼的,也有白眼的,它们之间的数量比例是3:1。这个实例表现得如词典型的孟德尔式的基因一样。有趣的是,曼的白眼果蝇全部都是雄性个体。以后的多次交配表明,白眼几乎总是出现在雄性果蝇身上,但偶尔也会出现一只白眼的爆果蝇。这使摩尔根想到,决定红眼和白眼这两种性状的基因很可能总是与决定性别的染色体