4 加州理工学院-2
玻尔原子
在进入加州理工学院之前,鲍林只在俄勒冈农学院上过三学期专门为化学工程师设计的物理学入门课程。课程极少涉及欧洲最新的物理思想,比如由一位年轻的丹麦人尼尔斯·玻尔率领的一小组物理学家正在探求世界的构成。
玻尔希望了解原子,所以在战前来到英国追随卢瑟福学习,当时卢瑟福刚刚提出电子围绕原子核飞行的动态太阳系原子模型。玻尔第一个伟大成就在于把卢瑟福的原子与其他物理新发现联系在一起,其中最重要的发现是元素会令人不可思议地释放或吸收特定的、不连续的能量——德国物理学家马克思·普朗克在1901年把这些能量束命名为量子。
普朗克的理论耸人听闻地提出,能量与光和热一样,不像牛顿所认为的那样是连续光滑的,而是以一种不连续的能量单位形式存在的。普朗克的理论可以解释诸如黑体辐射等奇特现象,但与许多传统物理概念大相径庭。尽管越来越多的事实支持量子论——其中最重要的一些结果是由一个名叫爱因斯坦①青年理论家提出的——但是物理学界对量子论并没有形成一致的意见,许多人认为它只不过是为了方便而杜撰出来的概念。
①爱因斯坦(Albert Einstein,1879—1955),美籍德国理论物理学家,创立狭义相对论(1905)和广义相对论(1907—1916),提出光子概念(1905),创立光电效应定律,曾参加反战、反法西斯斗争,反对使用核武器,获1921年诺贝尔物理学奖。
然而玻尔却胸有成竹,他认为量子不仅是真实存在的,而且在认识原子中是必不可少的。他于1913年发表了一篇论文,提出一种原子模型。与卢瑟福的模型相似,电子在扁平的圆形轨道上围绕原子核旋转。但是玻尔提出,轨道只可能具有一定的大小,而且受量子规则约束。获得一定量能量,玻尔电子就会从一个轨道“跳跃”到另一个能量较高的轨道;回到较稳定的轨道,玻尔电子会释放出能量,有时候还具有可见光的形式。
在过去的几十年中,物理学家利用分光镜仔细研究了发光体发出光线时产生的一种神秘现象。受热时,不同元素发出的光线在光谱中的分布并不是均匀的,而是相隔特定的波长。每个元素表现出的波长图是独特的,好比发光的指纹。这些图样本身令人着迷、催人遐想。它们似乎很有规律,预示着一定规则,但同时又异常复杂,难以作出解释。透过分光镜,每个元素似乎都以光的形式展示了某一独特和谐的指法。但是,谁也无法解释为什么原子会发出这些奇特的音调。
玻尔能够做到这一点。这是玻尔原子模型最令人瞩目的成就:在观察炽热气体时,他把电子在量子轨道的跃迁与通过分光镜观察到的亮纹的频率联系了起来。
至少在氢元素上玻尔理论是相当成功的。氢是最简单的元素,只有一个电子,玻尔的原子模型可以用来计算最明显的氢原子光谱。但是尽管经过多年努力,他的理论仍不能令人满意地解释氢原子光谱的一些精细结构,更不用说解释比氢复杂的元素了——当然,任何别的元素都要比氢复杂。
但是在氢光谱上取得的成功促使其他一些物理学家——其中主要有劳厄以前的导师、德国理论家阿诺德·索末菲,慕尼黑理论物理研究院院长——来改进他的理论。第一次世界大战期间,他在两位作为敌对国公民扣留的助手的帮助下(其中一位是出生于俄国,后来在加州理工学院任教的保罗·爱泼斯坦),拓展了玻尔的原子模型。在简单的圆形轨道之外,他们又增加了椭圆形的互相穿插的轨道,对于电子在这些轨道上的运动又用爱因斯坦的相对论进行了修正。结果是一个更加复杂的原子模型,可以用来解释氢光谱的大多数精细结构,并可以推广到多电子的原子。