5 慕尼黑
的天地。不过,名称对于诺伊斯来说无所谓;他需要鲍林。物理学家希望发现原子现实下蕴藏的规律;鲍林希望运用这些规律使化学更具有理性,体系更严谨。先前驱动奥斯特瓦尔德和诺伊斯的正是同样的梦想:被物理学光芒照亮的化学。只不过现在的物理学发生了翻天覆地的变化。而鲍林将把这新的火炬带回来。
1927年春末,诺伊斯写信给鲍林,给了他一个加州理工学院的教职。名称相当出奇,反映了他的双重兴趣:理论化学和数学物理助理教授。
鲍林在获悉他的古根海姆奖学金得到延期后的几星期,就和爱娃一起来到了哥本哈根的尼尔斯·玻尔研究院。这里是量子革命的中心,已经带上了传奇的色彩。人们谈论着弥漫在玻尔研究院里的哥本哈根精神:一种互助、协作和友谊的精神。人们进行着无休止的讨论,对任何一种新的物理思想无不究其穷尽。鲍林从一个同事那儿听说过,玻尔研究院听课不用作任何安排,所以他没有收到正式邀请就去了。这位同事看来是提了一个糟糕的建议。鲍林发现几乎无法见到这位伟人;玻尔的大脑被更宏大的问题占据了。
1927年春夏之际,量子力学进入了一个新的阶段。上一年年末,薛定谔和英国神童保罗·狄拉克着手弥补波动力学和矩阵力学之间的裂缝。他们的研究表明,这两大体系在数学上是对等的,两者为相同的问题给出了相同的答案。但是数学背后的物理现实是什么呢?在与玻尔进行了一次马拉松式的会谈后,薛定谔放弃了他原先提出的观点,即他的波动方程描述的是实际存在的电子“云”。玻恩和其他一些科学家的研究显示,他的方程式描述的不是实际的波,不是一个物理意义上的“现象”,而是一个统计学意义上的概率,即在一定区域找到一个电子的数学可能性。
薛定谔和海森伯的成功并不在于表述了原子,而是用数学捉住了原子,驯服了原子,这样就可以预测原子的性态。这一预测的能力相当强大,而且至关重要。那些思想开放的物理学家在一瞬间就意识到了新的量子力学是成功的,在旧的体系一筹莫展的地方,新的量子力学指明了前进的方向。但是,海森伯和薛定谔仍将继续就数学背后的现实进行争论。
比如说,电子如何能同时既是波又是粒子呢?这仍是一个悬案。在对这一问题进行了数月的钻研,在和薛定谔,特别是和海森伯进行了无数次精疲力尽的探讨之后,玻尔断定,两种描述都是正确的。原子现实(至少)是两面的:你发现的电子取决于你选择观察它的方式。波和粒子的描述都是正确的,都是必须的,两者是互补的。鲍林在丹麦期间,这一种对量子物理进行修饰的“哥本哈根解释”占据了玻尔大多数的时间。
这一解释似乎是在回避问题。电子是什么?人们越来越清楚地认识到,没有人能够以一种可想见的方式来描述它。波粒两重性以及量子跃迁是人们从未经历过的现象;事物在原子层次的运动规律与在感官层次的运动规律似乎是截然不同的。在与玻尔进行了长时间的讨论之后,海森伯会一个人长时间地散步和苦思冥想:自然界可能像在这些原子实验中显示的那么荒谬吗?
物理学现在逐渐与哲学合流了,而海森伯在1927年3月提出的“测不准原理”更加剧了这种倾向。在对其矩阵思想作了相当简单的推广之后,海森伯指出,一个观测者无法同时知道一个电子的确切位置和速度。你能够肯定的只不过是一个电子在某一区域的统计可能性,而无法保证它是否真的在那儿。他的思想在从本质上来说是基于实际经验的:要想观察电子,你一定得借助于一定的光能,但即使是最小的光束也会把电子撞到一边,从而影响到观察的结果。我们在观察电子时永远找不到其确定的位置。在原子水平,我们达到了观察能力的极限。
这就对认识自然提