8 生命科学
在有机化学和生物分子研究方面起步也许是晚了一些,但是一旦开始,他就以他一贯的精力和想象力全力以赴地投入了工作。在理论方面,他和自己的学生韦兰德将他们的共振思想运用到了重要的有机物质结构上,如有机酸中的羧基和不含芳烃的原子团。劳伦斯·布罗克威的电子衍射仪已经开始运转,一系列关于有机小分子结构的论文开始出现,其中一篇描述的是血红蛋白的一个亚层结构。
血红蛋白是实验室研究的理想对象,这有以下几个原因。首先最重要的,它是肌体中最重要的一类分子。毛发、角质和羽毛,皮肤、肌肉和腱,都是蛋白质,神经和血液的最主要的部分也同样是蛋白质。人们还无法解释的能够催化某些反应的酶是蛋白质;抗体和染色体——携带遗传密码且由蛋白质和核酸纠结而成的物质——的大部分也是蛋白质。蛋白质参与每一种反应,而且是肌体任何一个器官的重要组成部分。人们认为,生命的秘密可以在蛋白质中找到。
在30年代早期,没有人知道蛋白质的特性,甚至不知道蛋白质看上去是怎么样的。然而,蛋白质是推动生命过程的引擎;那些冷冰冰的化学物质正是在这些分子层次上变成了活动的、会呼吸的有机体。发现韦弗所称的“巨大的蛋白质问题”的秘密将是生命科学计划的最重要的一项内容。
然而,如果从实际出发,研究蛋白质是一场恶梦。早期的资料显示,它们是巨大的分子,有时候包括几十万个原子——比鲍林解决过的任何分子结构都要复杂得多。它们很难提纯,而且很易变质。只要用酸或碱稍稍进行加热或者处理,就足以改变一个蛋白质的自然形状并使它丧失活性——就是人们所说的“变性”。如同打蛋的经验显示,稍稍用一把叉子搅拌一个蛋清,有时就足以使它变性。
血红蛋白至少还不至于这样脆弱。从牛或羊的血液里可以容易地得到大量纯净的血红蛋白。它更大的优势是会结晶,这意味着它具有一种规则的、重复的结构。一种物质只要能够结晶,那么至少就有可能通过X射线衍射来分析它的结构。
血红蛋白还可以被分解开来,一段一段地进行研究。它是一种与别的非蛋白质结合的蛋白质,在此是与一种称为卟啉的环状分子结合在一起。卟啉又与一个铁原子结合在一起,铁原子又与氧结合在一起,这样,血红蛋白就能把氧带到全身各处。当鲍林在1929年访问哈佛时,科南特就向他介绍了一些自己有关卟啉的研究工作,引起了鲍林的兴趣。卟啉之所以引起人们的兴趣,首先是由于它奇特的形状——由许多小环组成的一个大环——然而更重要的是,它存在于大自然的每一个角落,在植物的叶绿素中和氧结合,在许多动物的血红蛋白中也是它与氧结合。卟啉似乎在分子层次上代表了具有生命普遍意义的分子生物学思想:哪里有生命,哪里就有卟啉,它在不同的有机体中扮演了相似的角色。
卟啉由四个串成环的吡咯组成。吡咯是一个由单键或双键交替键合的原子环,称为“蛋白质与非蛋白质结合”的结构。鲍林在化学键本质的一篇论文中曾经对这一结构的化学性质作过讨论。要研究血红蛋白,吡咯是一个自然的起点。从这里开始,鲍林可以逐级研究更为复杂的结构:四个吡咯结合在一起组成一个卟啉环;一个卟啉环加上一个铁原子组成一个血色素;每个血色素和一个球状蛋白质组成一个血红蛋白单位;四个血红蛋白组成一个血红蛋白分子。最终的构造大得令人难以想象:一个包含上万个原子的球体。鲍林很快作出结论,这一构造十分复杂,无法直接用X射线晶体学进行研究,尽管一些受洛克菲勒基金资助的乐观的英国研究人员正打算这样去做。也许他可以把血红蛋白分子分解成其组成部分,弄清楚每一个亚层结构,然后把它们再装配起来。
鲍林开始阅读能够找到的所有关于血红蛋