第三章 素数的滥用
原子说——相信事物不可分割——不仅指导着古希腊人研究物质而且指导着他们对数的研究。欧几里得及其同时代人认识到,某些整数如 2,3,5,7及11是根本不能被除尽的。这些只能被它们自身和1整除的数被称为素数。那些不是素数的数——如4,6,8,9,10等等——有另外的除数。这些数被称作合成数(非素数),因为它们每个数都各自由某些素数“合成”。例如,4=2×2,6=2×3,8=2×2×2,9=3×3,及10=2×5。
1985年9月,当休斯敦的谢夫隆地球科学公司对被称为克雷X-MP型的新式巨型计算机进行使用检验时,它在以每秒做4亿次运算的速度工作了3个多小时后发现了人(或机器)所知的最大素数。
大约在2300年前,欧几里得就证明存在无限多的素数。但迄今还没有人发现素数的模型或产生素数的有效公式。由于没有模型可参照,发现新的最大已知素数没有任何窍门,这一发现的新闻不仅迅速地传遍了数学界而且传遍了整个世界。美国哥伦比亚广播公司《晚间新闻》节目的主持人瓦尔特·克伦凯特专门在电视上插播了一个素数的轻松故事,而全国公共广播电台仍然有这样一个栏目。
谢夫隆计算机求得的创纪录的素数多达65,050位数。这个有65,050位数的庞大数字是一个梅森数,它等于2的216,091次幂减1,要把这个数全部列出来要占去本书30页纸。“我们只是偶然地运算了足够的数而得出这一新素数的,”谢夫隆的一位副总裁告诉新闻界说,“让该机器开动并进行运转,证明它健全无损是我的职责,其结果是令人感兴趣的……但这些结果肯定无助于发现石油。”
寻找更大的素数并探求其性质与寻求奇数完全数一样都是数论的一部分。数论表面上简单。其主要定理可以表述得人人都可理解,但证明起来——如果是已知的话——却需要艰深而复杂的数学运算。例如1742年,生于普鲁士的数学家克里斯琴·哥德巴赫猜想每个比2大的偶数都是两个素数之和。根据这一分析,4=2+2,6=3+3,8=3+5,10=5+5等等。数理论家借助于计算机将1亿以下的所有偶数都分成为两个素数之和,然而他们却没能证明哥德巴赫的简单猜想是普遍正确的。而这并不是因为缺乏尝试之故。过去两个半世纪以来,许多最有才能的数学家都曾思考过这一问题。
在数学的所有分支之中,数论传统上一直是最远离物理现实的。数学其他深奥领域的抽象结果似乎已有效地用于物理、化学和经济之中。而对数论中的多数结果来说却并非如此。如果哥德巴赫猜想明天得以证明,数学家会欣喜异常,而物理学家和化学家将不知道如何应用这一成果——如果它确有应用价值的话。因此,研究素数被认为是最纯的数学,与应用无关的数学。几个世纪前,数论的这种纯性为它赢得了“数学皇后”的美称。
然而在今天,这座宫殿里却出了问题。那最纯的论题——素数正在以国家安全的名义滥用自己。据报道我们政府所用的某些最好的密码是依靠素数创制的。在这些密码中,字母被转换成数字,其根据纯然是数学的:某些计算程序较易创制但极难破译。例如,计算机计算两个100位数的素数的积极其容易。但已知那个200位数的积去恢复那些素数除数却极其困难(当然,除非有人告诉你)。将这一点应用于密码使人茫无头绪。将电文译成电码的人必不能破解密码。将电文译成电码,他只需知道200位数的积。但要破译这段电文他得知道两个素数除数;而只知道其积是远远不够的。
这种密码被称为公钥密码,因为它可以用一种很公开的方式来使用。如果我想收到秘密信件,我只需公布200位数的数字(并对如何用于编密进行解释)即可。然