第五章 制作复活节大彩蛋
的幸运。
鸡蛋和许多其他鸟蛋都是一端比另一端粗些,这就是说蛋类能够在巢内紧密地堆放在一起,可比球形蛋堆放得要多。美国伯洛伊特学院鸟类学家乔尔·卡尔·韦尔蒂写道:“如果双胸斑沙》鸻(北美鸻科鸟一种小水鸟,以其悲哀、尖刺的叫声而闻名)的巢里4个鸟蛋排放混乱的话,母鸟就会将其细端朝内重新排列好蛋,非常像一块块薄馅饼,这不仅使亲鸟能更好地覆盖鸟蛋,而且由于其密集的排列使鸟蛋从鸟体上得到的热量散失得比较缓慢。
也许,蛋类的形状还有助于增加强度。它毕竟需要在巢亲鸟的体重压力下不至于破裂。我们已经知道蛋的大小与蛋壳的厚薄度,鸡蛋的强度是蛋中比较强的,但它还不是非常强的,还不能像传说中所说的,能在大力士手中纵向紧握挤压下幸存下来。也许这位神话中的大力士能把一本电话号码簿撕成两半,(传说中的鸟蛋强度已被最新的广告用来招徕顾客,广告图片描绘了一个C形铁钳钳住的没有破裂的鸡蛋。)实际上,你也不会是一个只用单手打破鸡蛋的男子汉;而我在6岁时就曾用一只小脏手打破过鸡蛋。可见,科学是进步了,但厨房的地板却一塌糊涂。
雷施说道:“如果一位壮汉在鸡蛋表面上均匀施加压力,他将不能压破鸡蛋。这在理论上可能是正确的。然而实际上,没有一个人能够均匀地施加压力,总会在某点上大于另一点,因而鸡蛋就会破裂。在许多教科书中,人们总想说明,若在一大堆鸡蛋的上下铺些灰泥,大象站在上面,也不会压碎它们。这也只能说明任何一种结构的真实性:如果你能正确地施力,那么结构就能承受。而在现实世界中,却从来没有正确施力的。”
对此,雷施考虑,怎样工作才能使他从理论上和在实际中都成为一位理想的制作复活节彩蛋的人,他可以从图纸上的设计中看到那个高达31英尺、重达2吨半、像纪念碑一样庞大的复活节彩蛋。雷施的生活中有一句简单的座右铭“志在四方”。有时,他会离开美国几个月,到印度去思考,有时,他会在大学或研究中心附近开设商店,并从事他的几何图形艺术和计算机图形学研究工作。然而在大部分时间内,他都是到处走动,受聘于那些在几何设计方面需要帮助解决各种棘手问题的人,如他在韦格勒维尔镇的朋友们。由于雷施在数学或工程方面没有经过正式的培训,因此他所依靠的主要不是分析方法,而是靠他头脑中形成几何抽象概念的能力,然后用他自己的双手(目前则是用他的计算机打印机),把这种思维的抽象概念转化成为物理实体。
他曾为设在弗吉尼亚州的美国国家航空航天局的兰利研究中心设计过预制的航天飞机舱室组件。这些组件能够紧紧地装在运载它们进入太空的航天飞机载货架上,在太空展开后可以连接在一起,形成巨大的太空站结构。影片剧本《星际旅行》的制片人曾雇用他设计一种外星飞船的嘴;制片人告诉他,要把嘴设计成貌似器官而且具有高科技的特点,他终于设计出这种神秘太空飞船的技术嘴,能够在其飞行途中吞没一切东西,包括星际飞船“企业号”在内。他也为荷兰的一家多国包装设计联合大型企业——范利尔皇家包装工业公司设计出一种高效的装箱方法,可把类似苹果和李子等球形水果更多地装入条板箱内。
找出一种最密集地堆积各种不同几何状物体的方法,是数学中一个古老的问题,它曾引起过许许多多的争论。例如 1694年,伊萨克·牛顿就曾与牛津的天文学家戴维·格列高里进行过关于球形问题的争论,所有一样大小的球形,能够与任何一个同样大小的球形接触,其最多数目是多少,格列高里说是13个,而牛顿却认为是12个。这个问题的讨论持续了180年,最后证明牛顿是正确的。
在第十三个球形的周围放置12个球形,是已知的最密集堆积球形