6.母结构
t; 0)。
为了把这些不同方面互相联系起来,为了帮助说明结构的普遍意义可能是什么情况,值得先思考一下:“数学建筑学”(布尔巴基学派用语)的基础,是否具有“自然的”性质,或者只能建立在公设化的形式基础上?这里我们已经可以在“自然数”指正整数的意义上使用“自然(的)”这个术语了;正整数在数学上使用它们之前先已经构成,是用从日常活动里所抽出来的运算构成的,这些运算,如早在原始社会里一对一的物物交换中所使用的、或是儿童玩耍时使用的一一对应的关系,在坎托尔(Cantor)用来建立第一个超穷基数以前,已经使用了几千年了。
人们可以惊奇地看到,儿童在发展过程中最初使用的一些运算,也就是从他加在客体上的动作的普遍协调中直接取得的运算,正好可以分为三大范畴,划分的标准,根据:运算的可逆性来自逆向性,象代数结构一样(在这个儿童的特殊情况下,是分类结构和数的结构);或运算的可逆性来自互反性,象次序结构一样(在这个特殊情况下,是序列、序列对应关系、等等);或者是运算组合系统不是以近似与差别为基础,而是来自邻近性、连续性、和界限的规律,这就组成了一些初级的拓扑学结构(从心理发生学的观点来看,这些结构先于矩阵结构和投影结构,与种种几何学的发展历史正好相反,但却与理论推衍产生的顺序相符!)。
所以,这些事实似乎表明,早从智慧形成的相当原始阶段时起,布尔巴基学派研究所得的那些母结构,在如果不说原始、自然还是非常初步的,并且从理论层次上说离开这些母结构所能具有的普遍性和可能有的形式化程度还很远的形式下,就已经与智慧的功能作用的必要协调,有相对应的关系了。其实,要证明刚才讨论的那些初始的运算在事实上来自感知-运动(级)协调本身是不会很难的,在人类的婴儿身上和在黑猩猩身上一样,这些协调的工具性动作肯定已经具有若干“结构”了。(可参见第四章)
但是,在阐明从逻辑观点看来上面这些见解意味着什么之前,我们先要看到,布尔巴基学派的结构主义,在一个值得指出的潮流的影响之下,正在转化演变的过程之中。因为这个潮流的确使人看到了发现——如果不说造成——新结构的方式。这就是要创立“范畴”麦克莱恩[MacLane] 、艾伦贝格[Eilenberg]等),也就是说要创立一个有若干成分的类,其中包含这些成分所具有的各种函数,所以这个类带有多型性(morphismes)。事实上,按照现在的词义,函数就是一个集合在另外一个集合上或在自身上的“应用”,并导致建立各种形式的同型性或“多型性”。这差不多就等于说,在强调函数时,范畴的重点不再是母结构,而是放在可以发现出结构来的、建立关系的那些程序本身上面。这就又等于把新结构不是看成从先前的各种运算已达成的各种“存在”中引出来的,而是从作为形成过程的这些运算本身里抽绎出来的。
因此,巴普特(S.Papert)在上面所说的范畴里看到的,更多地是为真正理解数学家的运算而努力,而不是为了理解“一元化”数学的运算法的努力,这不是没有道理的。这儿就是反映抽象的一个新的例子,说明这个反映抽象法的本质,不是来自客体,而是来自加在这些客体上的那些动作(即使原先的客体已经是这样抽象得到的一个结果),这些事实,对于结构构成的性质和方法而言,是很宝贵的。