7.逻辑结构
的伟大创始人之一——布尔的逻辑学,构成了一种代数学,叫做布尔代数学。布尔代数学保证了“类”的逻辑和传统形式下的命题逻辑的解释,而且相当于模数为2的算术,就是说它唯一的值是0和1。可是,我们可以从这个代数学中引出一个“网”的结构(参看第6节),只要在所有网结构的共同特性上,增加一个分配性的特性,一个包含着一个极大成分和一个极小成分的特性,还有主要的一个是互补性的特性(这样,每个项都包含了它的逆向或否定项):于是人们称之为“布尔网”。
另一方面,排中选言的(或者是p或者是q,不能兼是两者)和等价的(既是p又是q,或者既不是p也不是q)这两种布尔运算,二者都能组成一个群,而且这两个群之中的每一个群,都可以转换成一个交替的环。这样,我们看到,在逻辑学上又找到了数学上通用的两个主要结构。
但是,此外我们还能抽绎出一个更普遍的群,作为克莱因四元群(groupede quaternalite)的一个特殊情况。假定是这样一个蕴涵命题p =gt; q的运算:如果我们把这个命题改成逆命题(N),就得到p·(-q)可这就否定了蕴涵关系)。如果我们把p =gt; q命题的两个项对调,或者单保持原来的蕴涵关系形式而放在否定了的命题之间(-p =gt;-q),我们就得到它的互反性命题R,即q=gt;p。如果在p=gt;q命题的正常形式(也就是p.q V (-p).q V (-p).(-q)中,我们把符号(V)和(·)进行交换,我们就得到p=gt;q命题的对射性命题C,即(-p).q。最后,如果我们保留p= gt;q命题不变,我们就得到了恒等性变换I。于是,我们就以代换的方式得到:NR=C;NC=R;CR=N;还有NRC=I。
这样,就有了一个四种变换的群,其二值命题逻辑运算(命题可以是二元的、三元的、等等)提供的例子,和用它的“部分的集合”的那些成分组成四元运算所得到的例子有同样的多;这些四元运算中的某些例子可以是:I=R和N=C,或者I=C和N=R;但是,自然从来不能I=N的。
总而言之,在逻辑学中存在着一些完全意义的“结构”,这是很明确的,而且对于结构主义理论来说,更加有意义的是,我们可以从自然思维的发展中追溯这些结构在心理上的起源。所以,这里有一个问题,要留在将来再加以讨论。