三、悲壮的殉道者:希帕索斯悖论
有两种情况:一种是前提错误,一种是推导过程不正确。以上的推导中使用了两个前提:一个是毕达哥拉斯派“一切现象可归结为整数或整数之比”的信念,另一个就是毕达哥拉斯定理,但由二者推出了矛盾。显然,推导过程毫无差错,因此,问题只能出在前提上。毕达哥拉斯定理是已证明为正确的定律,这样,他们的信念就是不成立的。因此,希帕索斯悖论的发现就如同一声晴天霹雳,动摇了毕达哥拉斯学派整个信念大厦的基础,引起其他毕氏门徒的极大恐慌。他们决定立即封锁消息。可是如何能封锁得住?一传十,十传百早就传开了。这使得他们非常恼火,决定捉拿泄露天机的希帕索斯。希帕索斯并不屈服,于是逃离了这个学会。一些激进的门徒紧追不舍,结果在地中海的一条船上抓住了希帕索斯,并把他扔到了海里。
“青山遮不住,毕竟东流去。”希帕索斯可以抛到大海里淹死,但希帕索斯悖论是淹不死的。等腰直角三角形斜边的问题是人类社会生活中客观存在的问题,人们需要解决它来完成生产建设中某一环节的计算。因此,社会生活会从实际需要中促使希帕索斯悖论的发现。另外,根据毕达哥拉斯定理,可以看出,直角三角形的三条边并不一定就是整数,这使得毕达哥拉斯学派的信念中必然导致矛盾。作为直角三角形特殊情形的等腰直角三角形必然会成为研究者的课题,即使没有希帕索斯,也会有另外一个人看到这一悖论,只不过是时间早晚而已。人们很快发现,不能用整数或整数之比表示的数并非罕见的现象,如3、π、32等。随着时间的推移,无理数的存在逐渐成为路人皆知的事实,这些事实像潮水一样猛烈地冲击着传统观念,促使人们重新审视一切数都是整数或整数比的有理数理论,这就是历史上的第一次数学危机。
严格说来,这种危机并不是数学本身的危机,而是毕达哥拉斯学派“万物皆数”(整数或整数之比)信念的危机。本来,整数或整数之比确实是宇宙中普遍存在的现象,但他们把这种现象夸大并神秘化了。例如,当他们发现l、2、3、4能构成谐和的乐音时,就把l、2、3、4之和的10看作神圣而完美的数目,并把这一图形(由10个点构成的完美整体)也看作神奇而玄妙的图形,以至于认为天体也应该达到10这个数目。他们认为,人与人的关系也与数有直接联系。他们把理性看作1,意见看作2,正义看作4,婚姻看作5,爱情看作8。由于他们把违反客观规律的这种信念当作绝对真理,因此,必然会造成悖论,而危机也必然会接踵而至。
------------------