四、阿基里斯追不上乌龟:芝诺悖论与贝克莱悖论
阿基里斯是《荷马史诗》中的一个善跑健将,而乌龟是人们公认的跑得最慢的动物。起跑时让乌龟领先10米,发令之后,阿基里斯如离弦之箭向前冲去,而乌龟不论多急也只能慢吞吞地向前爬。大家肯定认为阿基里斯只需一眨眼的工夫就会追上并超过乌龟,但古希腊埃利亚学派的芝诺却指出,跑得最快的并不能跑过最慢的,阿基里斯永远追不上乌龟。这是著名的“芝诺悖论”之一。
芝诺提出此悖论的目的是为了否认运动的真实性。据说,后来古希腊犬儒学派的第欧根尼曾用十分简单的方法——行动进行反驳。他一语不发地站起来,在房间里走来走去,然后,询问学生这种反驳如何。其中一个学生很高兴,对反驳感到非常满意。第欧根尼上去就踹了他一脚,然后把他狠狠地训斥了一顿。这是因为芝诺并不否认这种感性的运动,而是在理性上用理由进行证明运动并不真正存在,因此,对方只有用理由进行反驳才有效。
芝诺的论证是这样的:
假设阿基里斯和乌龟的速度都保持不变,而阿基里斯的速度是乌龟的10倍,那么,当阿基里斯跑到第10米——乌龟起跑的地方时,乌龟已爬到第11米的地方去了,乌龟领先1米。于是,阿基里斯又奋勇向前。当他跑到第11米的时候,乌龟却已爬到11.1米的地去了,它还领先0.1米。而当阿基里斯跑完这0.1米的路程时,乌龟又向前爬了0.01米,如此不停地跑下去。阿基里斯要跑完10米、0.1米、0.01米的距离,而乌龟则依次领先1米、0.1米、0.01米显然,这些距离有无限多个,跑完一个又一个,永远也跑不完,乌龟始终领先一段距离。因此,阿基里斯只能无限地接近乌龟,而永远追不上、更不能超过乌龟。
由于在常识看来,阿基里斯能追上并超过乌龟,芝诺的上述论证在当时被认为最难以驳倒的,而所得结论却明显与直觉矛盾,因此,人们称之为“阿基里斯悖论”。
这种论证正确吗?从哲学上讲,这显然是一种诡辩。表达运动的概念有两个,即间断性(或点截性)与不间断性(或连续性),是不间断性与间断性的统一。芝诺的错误在于,他不懂得运动本身是二者的统一,而形而上学地割裂两者,只承认间断性而不承认不间断性。他把运动假定为在空间可无限分割的点,而把物体(阿基里斯)局限于点上,把运动看作这些静止状态的点的总和。他不懂得运动的物体到达这个点的同时就要离开这一点,因此,运动的物体不可能达不到目的而停留在无限可分的点上,阿基里斯会很快赶上并超过乌龟。
另外,芝诺没有看到,那些距离虽然有无限多个,可是,它们的和却是一个有限的、确定的距离。相应地,阿基里斯所用时间间隔虽然有无限多个,但它们的和也是确定的、有限的一段时间。
按已知条件,设阿基里斯跑完第一段路程所需时间为1分钟,则第二、三段所需时间为1/100分钟、1/1000分钟,则阿基里斯追上乌龟所有需时间t为10/9分钟。(无计算过程图)
芝诺悖论在当时并不受重视,但它在数学上的价值直到后世才为人们所发现,它说明“无穷大”、“无穷小”等概念逐渐出现在数学研究的项目中,这也是极限理论的萌芽。
在近代,随着科学技术的发展及社会实践的需要,这些概念又重新引起人们的注意,微积分理论就是主要建立在无穷小量分析之上的。但无穷小量分析后来被证明是包含矛盾的。
无穷小量分析的特点在于“无穷小量”的自由应用。例如,15世纪的尼古拉斯就曾用这种方法求出了圆的面积公式。他首先通过无穷分割得出了无穷小三角形OAB(无图)。由于AB为无穷小量,因此,无穷小三角形就既被看作一直边三角形,同时又被看成曲边三角形。