五、无穷旅馆:伽利略悖论
k3ak4…
现在我们可认选一个实数b=0.b1b2b3…,其中bk≠akk,同样,b1≠a11,b12≠a22。
显然,b不等于上述任何数,因为至少第k位bk≠akk。这样,线上的点与自然数之间的一一对应就建立不起来,线上的点数所构成的无穷大数大于自然数所构成的无穷大数。
可以证明且令人惊异的是,无论线段是1寸长,1尺长还是和赤道一样长,上面的点数都是相同的。而且,平面、立方体上所有的点数与线段上所有的点数也是相等的。这种无穷是比自然数、分数的数目更高一级的无穷。同样可以证明,所有几何曲线的数目是第三级的无穷。到目前为止,还没有人想象得出更大的无穷大数。这三级无穷大数就足以包括我们想到的所有无穷大数了。看来,在无穷的世界里,我们有点像开头所讲的那两个贵族了!
------------------