十四、奇妙的唱机与唱片:拒斥排中律
,分析了它的结构,并且发现确实有这样一组声音,如果它在唱机附近作响,就可以使唱机振荡,乃至于碎裂。
阿:你这个恶毒的家伙!不用细说我就明白了。你录下的真是这组声音,还假惺惺地把它当作礼物去送给蟹。
龟:你倒是够机灵的。不过事情并未就此了结。蟹并不相信他的唱机是有缺陷的,于是,他又买了一台更加昂贵的唱机。店主则向他许诺,如果他能发现一组在这台唱机上无法演奏的声音,我就包赔两倍的钱。于是,蟹兴致勃勃地来找我,而我也带着极大的兴趣去观看。
阿:我敢打赌,你一定又按照新唱机的结构炮制了一张新的唱片:“我不能在唱机2上演奏。”
龟:你的反应很快,你完全领会了问题的精神实质。当然,完全可以料想到,这台唱机又被震得粉身碎骨了。
阿:我倒有一个主意。他可以买一台低保真度的唱机,这样就不会重演使自己毁灭的那组声音了。
龟:可是,这样一来就违背了原来的宗旨——可以演奏任何声音。
阿:我现在明白问题的两难性究竟在哪里了。这就是说,任何唱机其实都是有缺陷的。
龟:我不明白你为什么要把这叫做缺陷。问题的实质在于,你要唱机去做它根本办不到的事情。不过,我的朋友蟹并不死心,他又自己设计了一台“奥米枷唱机”。这种唱机带有一架电视摄像机,能在唱片演奏之前先把它审视一番。它和微型计算机连接在一起,可以立即判定这组声音对于唱机所产生的效果。如果唱机会受到破坏,它就可以通过一个内部装置将唱机的各部分重新组装,从而改变它的内部结构再来演奏唱片。
阿:这下好了,你也没有办法了吧?
龟:瞧你这副得意的劲儿,如果你懂得哥德尔定理就不会这样得意了。
哥德尔定理是说:(1)如果系统是无矛盾的,那么,此系统是不完备的,即其中必有一个命题,其真假不可判定;反之,如果它是完备的,那么,它必然包含矛盾。(2)这样的系统自己不能证明自己无矛盾,除非它自己是矛盾的。
哥德尔通过建造一个类似说谎者悖论的命题证明的:“本命题在此系统中不可证”(G)。假如这个命题G在系统中可证,则证明了它“不可证”,矛盾。因此,假设不成立,G在系统中不可证。而G是说它在系统中不可证,故G真,这样,就证明了在系统中有一个真命题不可证。用上面的例子说,就是任何唱机都不可能完备,它总有不能演奏的唱片。所以,蟹通过摄像机审视后不断调整唱机结构的方法是行不通的,因为乌龟总可以设计出一种它不能演奏的唱片。哥德尔定理的发现标志着希尔伯特方案的破产。
论战中的另一方是以布劳威尔为代表的直觉主义学派。直觉主义学派认为,数学的基础和出发点是自然数的理论,而自然数则是由人的原始直觉(按时间顺序出现的感觉)构造出来的。数学理论可靠性的唯一标准就是心智上的可构造性。他们有一句名言:“存在必须等于被构造。”
由此,他们反对“实无穷”,而支持“潜无穷”的观点。所谓“潜无穷”,就是把无穷看成一个不断创造着的又永远无法完成的过程,例如,把自然数看成一个无限延伸的序列1,2,3,…,而不是一个已经完成的集合{1,2,3,…}。他们进一步认为,实无穷的观念是集合论中产生悖论的根源。按照直觉主义的观点,要判定一个命题A为真,就必须给出A的构造性证明。要判定一个否定命题非A为真,就必须有一个构造,这一构造将任何一个假定原命题A为真的构造导致谬误,例如推出一对矛盾的命题B和非B。在经典逻辑和经典数学中,人们经常使用间接证明的方法:欲证一个命题为A真,不是直接去证明,而是先假定A不真