十四、奇妙的唱机与唱片:拒斥排中律
,即非A真,然后推出逻辑矛盾,以此来证明命题为A真。这种方法直觉主义者是不能接受的,因为由非A推出逻辑矛盾并不意味着可以肯定命题A找到一个构造性证明。
有一个故事很形象地说明了这个问题:
一位能言善辩的人在滔滔不绝地说明“秘鲁地下有金矿”这一命题的正确性,可是,他既不清楚究竟在秘鲁的哪个地方有金矿,也不了解为什么会有金矿,也讲不出按照什么方法就一定能在一段时期内探明金矿的所在地,而只是兜着圈子论证:如果秘鲁地下没有金矿的话将会导致矛盾。一位听众提出了质问:“你的这番高论对于一个探矿者有何实际价值呢?”善辩者无言以对。
基于他们的基本立场,直觉主义者断然否定排中律的普遍有效性。布劳威尔认为,排中律是从有穷事物中概括出来的,任何一个涉及有穷事物全体的命题,如“我们班所有的都戴眼镜”,总可以通过对这些事物逐一加以验证,来判明该命题的真假,这时,排中律是有效的。但是,如果人们忘记了排中律的有穷来源,把它看成普遍适用的原则,并把它用于无穷的场合,就会犯错误。这是因为,对于无穷的事物,我们不可能对它们一一加以鉴别。例如,设命题A为著名的哥德巴赫猜想:“每一个大于4的偶数都可以表示为两个素数之和”(素数为只能被1和本身整除的数),这是一个涉及无穷的命题(因为偶数和素数都是无穷的),至今还无法证明这一猜想,即不能断定A真;但我们也无法论证这一猜想是错的,因此,也不能断定非A真。这样,命题A既不能证实,也不能否定,排中律失效。同理可以看出,“所有集合的集合”、“所有不以自身为元素的集合的集合”等等都是无穷的事物,对它们是否具有某种性质、是否属于自身等都是无法证实或否证的,排中律不再适用,因此,悖论也不会出现。
与许多其他解决悖论的方法如类型论、语言分层理论等不同的是,直觉主义学派采取的是一种激进的、釜底抽薪的方法,因为它使逻辑与数学的基础发生了根本性的转变。当然,企图维护经典逻辑与经典数学基础的人会极力加以反对。例如希尔伯特就很愤慨地说:“要想从数学家手中取走排中律,这就类似于想夺去天文学家的望远镜或禁止拳击家使用拳头一样。”
随着悖论研究的深入,越来越多的人认识到必须正视矛盾,接受矛盾,拒斥排中律、不矛盾律。1980年,美国的逻辑学家雷歇尔和布兰登提出了“不协调逻辑”。他们认为,自然界的无矛盾性决不是什么经验事实,而是恰恰相反!但他们却指出,对这种不协调性的研究,即关于世界的思维应该是协调的,这正如对于醉酒者精神状态的研究可以是清醒的一样。所以,在其系统中,他们企图把矛盾局部化,就像治疗癌肿一般把它们圈禁起来,使其不能扩散开来泛滥成灾。
在“不协调逻辑”之后,澳大利亚逻辑学家普里斯特和罗特列又提出了“超协调逻辑”。在介绍这种逻辑学说时,他们讲了一个土耳其人纳塞阿丁(13世纪人)的故事:
纳塞阿丁的菜园里有二园丁。园丁甲照管卷心菜,发现菜上有害虫,即着手捉虫,把虫弄死并抛出墙外。园丁乙走来问甲道:“你在做什么?”园丁甲回答道:“杀虫。”园丁乙问:“杀虫干什么?”甲回答:“因为它们吃掉纳塞阿丁的菜。”但乙却说:“别杀虫了,虫子也有它们吃菜的需要。”于是,二人开始争吵并打了起来。纳塞阿丁和他的妻子恰好走过。纳塞阿丁问:“你们为什么打架?告诉我,由我来判断。”园丁甲说:“我说这些虫子务必杀灭干净,因为它们吃掉您的卷心菜”。纳塞阿丁答道:“你说得对。”但园丁乙说:“我说不要去碰这些虫子,让它们吃饱。”纳塞阿丁答道:“你说得对。”这时,纳塞阿丁的妻于对他说:“但是,纳塞阿丁,他