返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
第十—章 知识或确定性
光是各种波长的光线的混合,从红色到橙、黄、绿、蓝,最后是紫色,最短的可见光波。从理论上讲,通过短的紫色光波,较之长的红色光波,我们可以看到更为精细入微的细部,但是,在实践上,光的不同组合看起来作用不大。

    那位画家对这张脸进行了分析,区别它的种种特征,分离不同色彩,将图像放大。人们自然要问:难道科学家不会用显微镜去分解和分析更为细微的特征吗?是的,科学家应该这样做。但是,我们也应该懂得,显微镜可以放大图像,却不能改进这一图像:细节的清晰度是由光的波长所确定的。事实上,在任何波长的光照射下,我们只有用与波长大致相当的物体才可以将一束光线截断;物体太小,就不能留下阴影(也就不会产生图像)。

    在普通白光照射下,人体皮肤的单个细胞要放大200多倍才能分辨出来。若要分辨得更细,就要用波长更短的光线才行。这就要用紫外光才行了。紫外光波长只有万分之一毫米甚至更短——比可见光短十倍或更多。透过紫外光看去,我们就会看到一幅幽灵似的莹光熠熠的景象。通过紫外显微镜可以看到细胞中的放大了3500倍的染色体。但这里有个极限:没有什么光线可以使我们看到染色体内的人体基因。

    如果我们还想更深入地进行观察,就必须缩短光的波长,直到运用X射线。但是,X射线穿透力太强,任何物质都不能使其聚焦;我们无法制造一台X射线显微镜。因此,我们只能满足于用X射线照射这张脸,得到某种影像。这时细部的状况也就取决于射线的穿透力了。我们可以看到皮肤下面的骨胳——例如,可以看到这个人的牙齿全掉了,用X射线透视人体,就像1895年威尔赫晦?康拉德?伦琴(ilgen)发现这种射线一样立刻使人们兴奋不已,因为物理学这时作出了一种大自然赐与的服务于医学的发现。伦琴的这一发现使他成为一位慈父般的人物,成为于1901年获得首次诺贝尔奖金的英雄。

    有些时候,依靠曲折迂廻的方法,我们可能侥幸作出更多发现,这就是,推导一种不能直接目睹的排列。X射线不会使我们看见单个的原子,因为原子太小,即使在如此之短的波长的光照下,也不能形成影象。然而,人们却可以描绘晶休中的原子图形,因为这些原子的分布规整有序,而X射线的照射将构成一个规则的波纹模式,从而使人们可以推测这些挡住了视线的原子的位置。这就是脱氧核糖核酸的螺旋结构中的原子:基因正是这样。这种方法是马克斯?冯?劳厄(Max von Laue)于1912年发明的。这个独创可谓一箭双雕:因为这第一次证明了原子确实存在,同时也第一次证明了X射线是一种电磁波。

    我们还可以采用另外一种手段,即使用电子显微镜。在电子显微镜中,射线是如此集中,以致人们不知道应该称它们为波还是粒子。电子束打击在一个物体上,勾勒出它的轮廓,就像集市上杂耍艺人抛掷飞刀。人们从中看到的最小物体是单个的钍原子。这是十分引人注目的。不过,这种模糊的形象证明,正如集市上掠过那位姑娘的飞刀一样,即使是最坚实的电子也不能勾划出一个清晰的轮廓。完整的图像仍像遥远的星辰,渺不可及。

    我们现在正面临着知识上的佯谬的严重矛盾。年复一年,人们设计日益精密的仪器,用来对自然现象进行更为精确的观察。但是,看看这些观察结果,我们就会失望地发现,它们仍然模糊不清,而且我们还会感到它们仍像从前那样令人感到扑朔迷离。人们似乎一直在追寻一个目标,然而,每当人们刚刚瞥见它,它却又从人们眼前悄然隐去,无影无踪。

    人类知识的这种矛盾不仅仅限于微小的、原子的范畴,恰恰相反,在整个人类的范围,在无限星空这样的范围,它也同样无须置疑。让我谈一谈在一个天文台中表现出
上一页 书架管理 下一页

首页 >人之上升简介 >人之上升目录 > 第十—章 知识或确定性