卷三
所成,〈不是quot;非一quot;〉。
又,照芝诺的定理,本一若为不可分、则将成为无是。
他认为凡增之而不加大,损之而不减小的事物,均非实是,这样,他所谓实是显然都得有量度。如有量度,这又将是物体;
实是之具有物体者,具有各个量向〈长短,阔狭,深浅〉;其它数学对象,例如一个面或一条线则在某两个或某一个量向可以增损,在其它量向是不能增损的;而一个点或一个单位则是全没有量向的。但他的理论不算健全,(不可分的事物相并时,虽不增益其量度,却可增益其数)。而且不可分物这样的存在就在否定他的理论,——一个量度怎能由这样一个或多个不可分物来组成?这就象是说一条线是由点制成的一样。
即便作出这样的假定,依照有些人的说法,数出于quot;本一quot;与quot;另个非一的某物quot;,我们还得提出这样的疑问:如这quot;非一quot;就是quot;不等quot;,与quot;本一quot;同为数和量度之原理,何以quot;本一与不等quot;之产物,有时为数,有时又为量度。这可不明白,怎么量度可以由quot;一quot;与quot;这个原理quot;得来,也可以由某些quot;数与这个quot;原理得来。
章五
(十三)与此相联的一个问题是quot;数quot;与quot;体与面与点quot;是否为本体一类。若说不是,这使我们迷惑于事物的本体究是什么,实是又是什么。演变,运动,关系,趋向,比例似都不足以指示任何事物的本体;因为这些都可为主词的说明,却都不是quot;这个quot;〈事物之所成为实是者〉。事物之最能指示本体者宜莫过于水与火与地与气了,四者万物之所由组成,而热与冷以及类此者则是它们的演变,不是它们的本体;只有那在如此演变着的物体才是一些常存而实在的事物,也就是本体。但在另一方面来说,体较之于面,面较之于线,线较之于点与单位确然更逊于本体,因为体由面来包持,无面不能成体,而无体时面却还自成立,〈面于线,线于点亦然〉。所以大多数哲学家,其中尤以早期诸先哲为甚,认为本体与实是应即为事物之实体而其它只是实体的演变,因此实是的基本原理就是物体的基本原理;而较近代,也是一般认为较聪明的哲学家,却想到了应以数为基本原理。我们已说过,这些若不是本体,世上将绝无本体亦绝无实是;至于这些本体的属性就不该冒称为实是。
但是,如果承认线点较之体更为本体,我们看不到它们将属之于何种实体(它们不能存在于可见体中),这就无处可觅本体了。又,这些显然是体的分解,——其一为阔狭,另一为深浅,另一为长短。此外,立体之中并无形状;石块里是找不到赫尔梅〈艺神〉象的,正方立体中没有半立方体;所以面也不在体内;若说面在体内,半正方立体的面也将是在正方立体内了。于线与点与单位也如此。所以,一方面讲来,立体是最高级的本体,另一方面讲来〈面线点与单位〉这些既有胜于立体,却不能举作本体的实例;这真令人迷惑,究属何谓实是,又何谓事物的本体。
除上述各节外,生成与灭坏问题也使我们面对着好些疑难。如本体先未存在而现时存在,或是先曾存在而以后不存在,这样的变化就被认为是经历了一个生灭过程;但点线面的一时存在,一时不存在并不能说也已经历了一个生灭过程。
因为当各体相接触或被分割,它们的界面在合时则两界成一界,在分时则一界成两界;这样,在合并时一界不复存在,归于消失,而当分离时则先所不存在的一界却出现了(这不能说那不可分的点被区分成为两)。如果界面生成或消失了,这从何生成〈或消失〉?