返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一章
第六章 数学中的逻辑技巧
了。在知识的一个部门里所需要的那些意义不明确的术语和未经证明的命题,我把它们的数目消减了,这是我第一次感到奥卡姆剃刀的用处。

    上面关于数的那个定义还有一个长处,是极其重要的。那就是,这个定义扫除了关于无限数的困难。只要数是由把项数一数得来的,那就不容易想象一次不能数完的一些集团的数目。举例来说,你不能把有限数数完。无论你数多么久,后面总还有更大的数。

    所以,只要数是从数数儿得来的,似乎谈有限数的数目就是不可能的。可是似乎数数目只是知道一个集体里有多少项的一种方法而已,并且只能用于那些有限的集体。应合这个新学说的数数目的逻辑是这样:例如,假定你是数金镑钞票。你心里努一把力量,使这几张钞票和1,2,3等数目之间有一对一的关系,直到数完钞票为止。按照我们的定义,你就知道,钞票的数目是和你念过的数目一样。

    而且,如果你是从1开始的,并且这样下去没有遗漏,你念过的那些数目的那一个数目是你念过的最后的那个数目。这个办法你不能用于无限的集体,因为人生是不够长的。但是,因为数数目再也不重要了,你也就用不着关心了。

    既已把整数象以上作了界说,就没有困难引伸其义以应数学的需要。有理分数是来自乘法的整数之间的比数。实数是一组一组的有理数,这些有理数是由零以上一直到某点所有的东西而成。举例来说,二的平方根是所有平方少于二的那些有理数。我相信我是这个定义的发明者。它解决了一个谜,对于这个谜,自从毕达哥拉斯那个时代以来所有的数学家都没有办法。复素数可以看成是成双的实数,所取“双”的意义是,其中有一个第一项和一个第二项,也就是说,其中项的次序是很重要的。

    除了我所提到的事项以外,在皮亚诺和他的门徒的工作中还有一些东西使我喜欢。

    我喜欢他们不用图形发展几何学的方法,这样就表示康德的直观是用不着的。我也喜欢皮亚诺的曲线,这个曲线普及于一整个范围。在我遇到皮亚诺以前,我已经充分知道关系的重要性。所以我立刻就着手用符号处置关系逻辑,以补充皮亚诺所做的工作。我是在七月之末遇见他的。在九月里我写了一篇文章讨论关系的逻辑,发表在他的学报里。

    我把同一年的十月、十一月和十二月用于撰写《数学的原理》。现在那本书的第三、第四、第五和第六部分和我在那几个月所写的几乎完全是一样的。可是,第一、第二和第七部分我后来又重新写过。我在十九世纪的最后一天,也就是一九○○年的十二月三十一日,写完《数学的原理》的初稿。那年六月以后的几个月是我智力活动的蜜月,无论在此以前或在此以后,我都不曾尝到过。每天我都发现我懂得了一些前一天不曾懂得的东西。我以为一切困难都解决了,一切问题都结束了。但是这个蜜月没有能持久。第二年的年初,智力活动上的悲哀充分地降到了我的头上。
上一页 书架管理 下一章

首页 >我的哲学的发展简介 >我的哲学的发展目录 > 第六章 数学中的逻辑技巧