第十章 维根斯坦的影响
穆塞在两篇很重要的文章里捡起化归性公理这个问题来,一是《数学的基础》,发表于一九二五年,还有《数理逻辑》,发表于一九二六年。不幸,莱穆塞的早亡使他的意见不能充分发展。但是他已有的成绩是很重要的,值得认真考虑。他的主要论点是,必须使数学成为纯然是外延性的,《数学原理》的麻烦是起自非法侵入了内包的观点。怀特海和我主张,一个类只能用一个命题函项来规定,这甚至可以用于好象为枚举所规定的那些类。举例来说,由a、b和c三个个体而成的这个类是被“x=a或x=b或x=c”这个命题函项所规定。维根斯坦拒绝等同(莱穆塞对此加以承认)使这个方法成为不可能,但是,从另一方面来说,莱穆塞认为,对于用枚举来给一个无限的类下定义,并没有逻辑上的异议。我们不能这样来给一个无限的类下定义,因为我们总是要死的,但是我们不免于死是一件经验上的事,这件经验上的事逻辑学家们是应该置之不顾的。他认为,根据这一点,乘法公理是一个重言式。例如,再回头讲那个有无限双袜子的百万富翁。莱穆塞主张,没有必要定一个规则从每双袜子里挑一只。他认为,就逻辑来说,一个无限数目的任意选择是和一个有限数目的选择一样可以容许的。
他把一个类似的观点应用于改变命题函项这个概念。怀特海和我认为一个命题函项是含有一个未定变项的一个表达法,一旦给这个变项指定一个值,就变成一个普通的句子。例如“x是有人性的”,一旦我们用一个专名来代替“x”,就变成一个普通的句子。这样来看命题函项们,它们是由内包而成(关于变项或变项们除外)。“是有人性的”这些字形成许多普通句子的一部分,命题函项是造若干这类句子的一个方法。函项的值因变项的不同的值而确定,变项由于语句内在的特性而有不同的值,莱穆塞关于命题函项的想法颇为不同。
他把命题函项只看做是使命题和变项的值有相互关系的一种方法。除了以前下过定义的那个断言函项的概念(为了某些目的,我们仍将需要这种断言函项),我们用外延来给命题函项的新概念下定义(倒不如说是说明,因为在我们的系统中,必须认为它是不能下定义的)。一个个体的这样一个函项是由命题和个体之间外延上任何一——多关系引起的;也可以说是一种相互关系(不管能实用不能实用),这种相互关系把一个独特的命题联合到每一个个体上,个体是函项的主目,命题是它的值。
如,A(苏格拉底)或许安女王已经死了,A(柏拉图)或许爱因斯坦是一个伟人;AxE只是Ax命题们和xF个体们的一个任意的联合(《数学的基础》,第52页)。
把这个新解释用于“命题函项”这个概念,他就能废除了可化归性公理,也能用在符号上同《数学原理》里的定义没有区别的东西来为“x=y”下定义,虽然那个定义现在有了一个新解释。这样他就成功地保留了《数学原理》的符号部分,几乎没有变动。
关于这个符号部分,他说,“形式上,它几乎没有变更;但是它的意义已经大大改变了。
这样保留形式,而改变解释,我是追随那一大派数理逻辑学家的,他们借着一系列惊人的定义,从怀疑论者的手中拯救了数学,并且为命题提供了一个严格的论证。只有这样我们才能使数学免遭柏劳尔和魏勒的布尔什维克式的威胁”《数学基础》,第56页)。
关于莱穆塞对“命题函项”这个概念的新解释的有效性,我是很不容易拿定主意的。
我觉得,实体对命题的一个完全任意的相关是不能让人满意的。请以自“对x所有的值来说,fx为真”到“fa”这个推理为例。按莱穆塞对“fx”这个概念的解释,我们不知道“ea”可以是什么。相反,在我们能够知道“fx”的意思是什