返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
第十章 论我们关于共相的知识
不必诉诸于人死的个别事例来断言我们的命题了。但是,这只意味着我们的概括是包罗在一个更广泛的概括之中的,它的证据尽管外延较大,但还是属于同类的。科学的进步经常产生这类小前提,因此,对于科学上的概括它就提供了日益宽泛的归纳基础。但是,这虽然使得确切可靠的程度大一些,然而它所提供的性质并没有差异:基本的根据还是归纳的,也就是从事例而来的,而不是先验的,不是和属于逻辑与算术中那种共相有关的。

    谈到先验的普遍命题,有相反的两点应当注意。第一点是,倘使许多特殊事例为已知,那就可以用归纳法从第一个事例得到我们的普遍命题,而共相之间的关系则是只到了后来才能觉察。譬如,我们都知道:倘使我们从一个三角形的三对边作三条垂直线,则这三条垂直线必然交于一点。很可能首先引导我们得出这个命题的就是:在许多事例中曾经实际画过一些垂直线,发现它们总是交于一点;这种经验可能就引导我们去寻找普遍的证据,结果我们就找到了它。这种情形,在数学家们的经验中是屡见不鲜的。

    另一点就更为有趣,在哲学上也更为重要:那就是,有时候我们可以知道一个普遍命题,但是关于这个命题的事例却一个也不知道。下列情形可以为例:我们都知道任何两个数可以相乘,所得的第三个数叫作乘积。我们也都知道:一切乘积小于100的两个整数都已经乘出,乘积的值都列在九九表内。但是,我们又都知道,整数是无限的,而人类所思考过的或将来所要思考的,只不过是整数中有限的成双成对而已。所以结果是,人类所从未思考过。也永远不会加以思考的成对的整数比比皆是;其乘积都在100以上。因此,我们就得到这个命题:“人类所从未思考过、将来也永远不会思考的两个整数的一切乘积,都在100以上。”这里这个普遍命题的正确性是无可否认的,然而就它的性质而论,我们却永远也举不出一件事例来;因为我们所想到的任何两个数都被排除在这个命题的各项之外。

    关于那些不能举例说明的普遍命题的认知问题。人们往往否认有这种可能性,因为谁都觉察不出对于这类命题的知识,而所需要的又只是共相关系的知识,而并不需要任何有关我们所说的共相事例的知识。但是这类普遍命题的知识,对于大部分一般公认为应当知道的东西,却是十分重要的。例如,我们已经在前几章里看到,和感觉材料相对立的物体只是由推论得出来的,而不是我们所认识的东西。因此,我们便永远不能认识像“这是一个物体”这种形式的命题,在这里,“这”指的是直接认识的事物。其结果便是:我们一切有关物体的知识都是不能举出实例证明的。我们可以举出有关感觉材料的实例,但是我们却举不出实际的物体的事例。因此,我们对于物体所具的知识,就全盘有赖于那种举不出实例证明的普遍知识的可能上。这也同样可以适用于我们对于别人心灵的知识上,或者适用于我们认识之中无例可举的任何别类事物的知识上。

    现在我们就可以综观一下我们知识的各种来源,因为它们已经在我们的分析之中出现了。首先,我们应当区别对于事物的知识和对于真理的知识。每种知识都可以分作两类,一类是直接的,一类是派生的。对于事物的直接知识,我们称之为认识的,根据所认识的事物而言,它包括两种,即殊相的和共相的。在殊相的知识之中,我们所认识的是感觉材料,(大概)也还有我们自己。在共相的知识之中,似乎没有一条原则可以使我们据之以判断哪样是可以凭借认识知道的。但是有一点却很明了,我们能够从认识而知道的东西乃是感性的性质、空间时间关系、相似关系和逻辑方面的某些抽象的共相。对于事物所具有的派生的知识,我们称之为描述的知识,它永远包括对于某种东西的认识和真理的知识。我们所具有的直接的真理知
上一页 书架管理 下一页

首页 >哲学问题简介 >哲学问题目录 > 第十章 论我们关于共相的知识