返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
第6章 论主体的第三类客体以及充足根据律在这类客体中起支配作用的形式
的始端如同在形成根据的链条环节系列中找始端一样,是不可能的;我们也不可能发现任何后部的终端,因为空间是无限的而且在空间中的线也是无限的。一切可能的相对空间都是轨迹,因为它们是有限的;所有这些轨迹相互之间都有它们的存在根据,因为它们是相连的。因此,空间中一系列的理由如同一系列生成的理由,都是在无限中进行的;此外,不仅是单向的,而是像后者一样,是全方位的。

    所有这一切都无法说明;因为这些法则的真理都是直接建立在先天赋予我们的关于空间的直观上的,是先验的。

    第38节 在时间中的存在根据、算术

    时间中的每一时刻都是以前一时刻为条件的。存在的充足根据作为推论的法则在这里之所以如此简单是因为时间只有一维性,因此它的关系不可能具有多样性。每一时刻以前一时刻为条件;我们只能通过它的前一时刻而达到:这仅就过去的时刻存在过并已消失,此刻才能产生而言。一切计数都依赖于可分的时间的连结,数字仅用来标志继起过程中的单一阶段;因此,整个算术同样依赖于它,算术所教给我们的只是计算的有条理的简略符号。每一个数都以作为其存在根据的先在的数为先决条件:我们只能通过十以前的所有数字才能达到十,只凭着这种认识,我才知道有十就必有八、六、四。

    第39节 几何

    同样,整个几何学依赖于可分的空间位置的连结。这样,几何学就是关于这种连结的认识;但是,正如我们所说,要达到这种认识仅靠纯粹概念或除了直观以外的任何其他办法,是不可能的,每一个几何学命题都一定要还原到感觉直观中,而证明不过是把所讨论的特定关系明确化;除此之外别无意义。然而我们发现,对于几何学的处理则与此大不相同。只有欧几里德几何学的十二个公理被认为是以纯粹的直观为基础的,更确切地说,甚至只有第九、十一、十二这三条公理被承认是以不同的直观为基础的;而其他的则被认为是以一种认识为基础,即认为在科学中跟在经验中不同,我们不涉及并置在一起、并受到无穷无尽的变化影响的自在真实事物,相反,我们处理的是概念,在数学中则是纯粹的直观,即数和形,它的法则对一切经验都有效,并把概念的综合性和单一表象的明确性结合起来。因为,作为直观的表象,它们的确定性极为精确——在这种情况下没有任何尚未确定的东西——但它们仍然是一般的,因为它们是一切现象的空洞形式,从而这些形式可应用于这些形式所归属的一切真实客体中,因此,柏拉图在谈到“理念”时所说的适用于概念,也适用于这些纯粹的直观,即使在几何学里也是如此,就是说,这两者不可能完全类似,不然的话,就没有形式和客体之分①。在我看来,它也适用于几何中的纯粹直观,若非如此,这些作为专有的空间的客体,即会由于空间排列上,即位置上的不同而彼此相别。柏拉图很早以前就说过这一点,正如亚里士多德所说的:“他进一步说,除可感事物和理念之外,在其中还有数学,其不同于可感事物,因为是永恒不动的,亦不同于理念,因为它们中的许多东西彼此相像;而理念则是绝对唯一的。”②

    --------

    ①柏拉图的“理念”最终可被说成为纯粹的直观,它们不仅适用于彻底表现中的形式部分,而且适用于物质部分——因此可以被表述为彻底的表象,它们完全是被确定的,但同时又包含许多事物,譬如概念——就是说,作为概念的体现,但完全适合于这些概念,请看我在第二十八节中作的说明。

    ②亚氏“形而上学”I.6,比较X.1。

    既然位置的不同并没有取消其余的共性,那

    么我认为以这一认识来代替其它九个公理就更加符合科学的性质,因为科学的目的是通过一般认识特
上一页 书架管理 下一页

首页 >论充足根据律的四重根简介 >论充足根据律的四重根目录 > 第6章 论主体的第三类客体以及充足根据律在这类客体中起支配作用的形式