第6章 论主体的第三类客体以及充足根据律在这类客体中起支配作用的形式
殊,那么,以同一个观念为基础分别表述九条公理这种做法就不那么适当了。而且,亚里士多德说过:“正是平等性构成了统一性”也能够适用于几何学的图形。
但是,时间中的纯粹直观,即数学,不存在空间排列上的区别,在这里,除了不同事物的同一性外无任何东西,同样属于概念,而不是其它:因为只有一个5和一个7。我们也许还能在这里发现为什么7+5=12是一个先天综合命题的根据,诚如康德意义深远地发现,这个命题是以直观为基础的,而非同一律,如赫尔德在其形而上学批判中所说的。12=12则是一个同一命题。
因此,在几何学中,只有在对待公理时我们才借助于直观。所有其他公理都要加以论证,即给予一个认识的根据,其真理性要得到每个人的认可。这样即可表现出该定理的逻辑真理性,而不是它的先验真理性(参看第三十和三十二节),由于后者存在于存在根据而非认识根据之中,因此,除了通过直观可以弄清楚之外别无它法。这就说明了为什么这类几何论证尽管明确地表达了已被证明的定理是真的这个信念,但却仍然没有说明为什么它所证明的定理之所以如此。换言之,我们没有找到它的存在根据,但通常这就会激起我们探求其存在根据的强烈愿望。因为通过表明认识根据所进行的证明只能产生信念,而非知识,因此也许可以更准确地把它称为索引而非论证,所以这就是为什么在大多数情况下,当它被直观时,由于完全缺乏认识而带来了一种不适感;而且在这里因为刚确切地知其然,要求知其所以然的欲望就变得更为强烈了。这种印象很像当某物从我们的口袋里变进或变出,而我们却不知如何的感觉。在这类论证中,在没有存在根据的情况下所确定的认识根据,跟某些只提供现象但不能说明其原因的物理理论很相似,例如,莱登福洛斯特的实验由于也可以在粗铂坩埚里获得成功;而由直观发现的几何命题的存在根据,就像我们获得的每一个认识,却能够让我们满意。一但我们找到了存在的根据,我们就会把对于该定理的真理性的信念只建立在该根据上,而非由论证给予我们的认识根据上。例如,让我们看一看欧几里德第一卷中的第六个命题:——
“假如一个三角形的两个角相等,那么,对应边也相等。”
欧几里德的论证如下:——
“设abc为一个三角形,其中Eabc=Eacb,那么,边ab 肯定等于边ac。
“因为,如果边ab不等于边ac,那么两条边中必有一边大于另一边。假如边ab大于边ac;从ba取bd等于ca,连接dc。这样,在Fdbc和Fabc中,由于db等ac,而且bc是这两个三角形的公共边,db和bc这两条边分别等于边ac和边bc;Edbc等于Eacb,因此,底边dc等于底边ab,Fdbc等于Fabc,较小的三角形等于较大的三角形,——这是荒谬的。因此,ab不是不等于ac,而是ab等于ac。”
在论证中,我们得到了该命题真理性的认识根据。但是谁会把对几何真理性的信任建立在这种证明上呢?难道我们不是把我们的信任建立在直观认识的存在根据上?依照存在根据(作为一种不必再行论证的必然性只承认通过直观提供的证据),从另一条线段的两个端点以相同的斜度画两条射线使之相交,其交点到线段两端的距离必然相等;因为这样产生的两个角实际上不过是一个,只是由于位置相对才显出是两个;因此没有根据说两条线会在靠一个终端近而靠另一个终端远的位置上相交。
正是对存在根据的认识向我们揭示了从其条件中而产生的被限定性条件的必然推论——在这个例子中,从等角中得出等边——即表明了它们的联系;而认识根据只表明它们的共存。而且我们甚至还主张,通常的证明方法只