第十一章 灵长类的视皮层
在西雅图的华盛顿大学)构建的猕猴展平的皮层的模型。由于皮层是弯曲和折叠的,图示必然会有所扭曲。①为了减少扭曲,在皮层薄板上有选择地进行了切割,得到了一个几乎隔离的V1区,插入在图的左侧。将该图与图48相比较,那里略去了表示皮层折叠的标志,并在相应位置上画了许多皮层区域,视觉区域以及那些具有部分视觉的区域都用阴影表示。对猕猴而言,它们总计占有总皮层略多于一半的区域,(要记住猴子是视觉功能非常强的动物。)
这张图远非最后的结论。例如,右上方的46区仍可被细分。许多区域具有奇怪的名字,但它们通常是其全称的缩写,如Mt代表中颞叶(middle temporal),VIP代表背侧内顶叶(ventral intra pari-etal),等等。其他有些区域具有数字编号(在此省略),它们通常是波罗德曼所定义的,其中一些已经被细分(如7a和7b)。
我将简要描述其中两个区域:Mt区和V4区,因此对已知的关于全部视觉区的所有情况不作叙述。这特别是由于对许多视觉区的了解还相当缺乏。皮层Mt区比较小,有时也称为V5区。它具有视野半区与视网膜区域相当好的对应,但其神经元的感受野一般比v1或V2区大。Mt区神经元对刺激的运动(包括运动的方向)特别敏感,每个神经元对一定速度范围内的刺激产生发放。有些对高速运动发放最佳,其余的则对应于低速运动。
最初人们没有想到这些神经元的反应通常依赖于目标与背景的相对运动。加利福尼亚理工学院的约翰。奥尔曼(John Allman)意识到了这一点。因为与许多神经科学家不同,他对猴子以及它们的野生生活方式非常感兴趣,至今他仍在家中养猴子。他曾数次出国在猴于的自然栖息地对它们进行研究。因此他具有关于猴子的典型视觉环境的第一手资料。他试图在实验室中以一种大大简化的形式再现这种环境。他和同事们使用电视屏幕上由随机点组成的棒作为刺激,通常一个神经元可能对其感受野内沿垂直于它的长度方向向上(或向下)运动的斑点组成的棒有很好的反应。然而他发现,如果由斑点组成背景也沿相同方向运动,神经元的发放会下降。如果背景沿相反方向运动,那么该神经元对运动棒的发放将会提高。这样,神经元主要检测的是局部特征与邻近背景的相似特征间的相对运动。这正是前面提及的非经典感受野的最简单形式。虽然事情并不总是这样明了,①看来这样的神经元组成的集合能够学会不仅仅对一个物体的一个特征反应,也能对物体的某些环境特征反应。
Mt区的某些神经元对更复杂的运动方式反应。它们的行为与所谓的小孔问题有关,考虑图49,想像在一个屏上有一个小圆孔,通过它来观察一根没有特征的直线,它是一根很长的直线的一部分,这根长的直线的大部分被屏所掩盖,如果这根直线沿任何方向运动,你通过小孔所能看到的一切只是一小段直线沿垂直于它长度的方向运动。在图49的注解中有更加详细的解释。
V1区中对运动方向敏感的神经元的行为便是如此。它所能感受的只是垂直于该直线方向的运动分量,而不是整个物体的真实运动。然而,Mt区的某些神经元确实能对实际运动反应,特别是如果信号是由若干个线段集合组成的。实验表明Mt区的神经元可简单地分成两类,一类能解决小孔问题,另一类则不能,就像们区的神经元那样。如果真是这样的话,那太好了。事实则要复杂得多。神经元表现出了这两类之间整个范围内的各种行为。尽管如此,这给出了一个例子表明视觉系统较高层次神经元的反应如何变得更加精细。
如果输入信息被误解,脑就会作出错误的解释。一个大家所熟悉的例子是理发店的柱状旋转招牌形成的错觉——这个