第三章 素数的滥用
数。公式4n2+4n+59的成功率为43.7%,同时得出大约1,500个不能由其他两个公式推出的素数。
最奇怪的是,虽然这些公式都有很高的成功率,虽然在方形螺线中存在明显的对角线规则,但数理论家已证明与欧拉公式相仿的公式无一能生成全部的素数,或除素数外别无他物。但这一证明并未阻止浪漫主义者寻找素数的模式。
在100以内的数字中有25个素数:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89和97。这些连续的素数(以及随后无限多的素数)之间的间隔并无明显的范式可循。由于2是惟一的偶数素数,2与3也是惟一一对只相差1个的素数。
相差2的素数——被称为孪生素数——又如何呢?在前25个素数中有8对孪生素数:(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61)和(71,73)。大约150年来,数字理论家就推测过,孪生素数就像素数本身一样是无限多的,但还没有人能证明这一点。在1966年,研究取得进展,那时,中国数学家陈景润证明:在只相隔两个的无穷对数字中:第一个数为素数,第二个数也是素数或是两个素数的积。(为两个素数之积的数被称为“殆素数”,这一叫法既表明了数学家们不可抑制的乐观主义,又证明了真正素数的发现之难。)
乐观主义的另一表现是:陈先生证明了哥德巴赫猜想的较无力那一面的说法:每个“充分大”的偶数是一个素数和一个殆素数之和。“充分大”是素数文献中对“我知道我的证明对比某数Q大的所有数都有效,但我不知道Q是多少”的婉语。虽然短语“充分大”一词模糊不清,数学家们仍然认为陈的证明是过去30年来对素数理论意义最为重大的发现。
人们对素数之间离得多开比素数如何相互靠近知道得更多一些。的确,很容易证明存在任意长的非素数的连续数列。让n!表示1到n的所有整数的乘积。这样,n!就可以被从2到n的每个整数整除。试想一下n!+2,n!+3,n!+4……n!+n的连续数列。这时,数列中的第一项n!+2则可被2整除;第二项n!+3可被3整除;第三项n!+4可被4整除;等等。在这个数列中有n—1个数,没有一个是素数。通过任意选择n的大小,你可以得出你想要的无素数的连续整数数列。
但也有大量的长串素数数列。事实上,数理论家认为素数可以形成漫长的等差级数(由同样差分开的素数数列)。较短的等差级数是容易发现的。例如,素数3,5和7构成3项差额同为2的等差级数。(1944年,有人证明有无限组等差级数的3个素数。)素数199,409,619,829,1039,1249,1,459,1,669,1,879和2,089构成一个10项共同差额为210的等差级数。至于更长的级数,由于初始的素数和共同差额急剧上升,因而难于发现它们。然而,1983年,保罗·普里查德在康奈尔发现了19个呈等差级数的素数;初始素数为8,297,644,387,共同差额为4,180,566,390。
一些数学家甚至推测存在任意长连续素数的等差级数。例如,连续素数1,741,1,747,1,753和1,759构成4项差为6的等差级数。然而,现在还没人能证明这一猜想,更不必说素数不必是连续的等差级数这一根据相对不足的猜想了。
对于素数,我们知道什么又不知道什么?对此可写一篇长篇论文。再举一个简单例子就足已。有人已证明在比1大的任何数和其倍数之间至少有一个素数。(这个证明的一个令人震惊