第三章 素数的滥用
的后果是:在n位数中至少有3个素数——n可为任何正整数。)但无人知道在任何比1大的数的平方和其相邻数平方之间是否有一个素数。
既然素数本身没有已知的模式可循,那么数学家在努力证明它们时明显显示出杂乱无章也许是惟一合适的做法。某些基本定理——如有无限多的素数,它们之间有任意长的间隔——已简单明了地得以证明。其他定理,如哥德巴赫猜想依然有待证明。虽然没有一个自重的数学家对其正确性表示怀疑。为取得进展,数理论家采用了证明关于“殆素数”和“足够大的数”的办法。这一领域需要出现另一个欧几里得或欧拉。在那之前,我们可能依然处于这种奇妙的状态:依赖于秘密通讯的政府和工业继续从数学家的无知中获利。
对数理论有兴趣的读者不妨对这些未被证明的猜想动动手和计算器。如果猜想是正确的,证明工作可能会采用技术数学的成果,这是门外汉所做不到的。但如果与所期望的相反,它们碰巧是错的,全部所需要的则是一个反例。据历史记载,那些最具数学头脑的人也会出错。欧拉声称,1个5次方的数决不会等于两个5次方的数、3个5次方的数或4个5次方的数之和。(换句话说,不存在满足等式x5=y5+z5条件的整数x、y和z;不存在满足等式a5=b5+c5+d5条件的整数a,b,c和d;也没有满足等式m5=n5+o5+p5+q5条件的整数m,n,o,p和q。)两个世纪后的1966年,这一断言受到驳斥,因为发现了一个反例:144的5次方正是另外4个5次方的数——即27,84,110和133——之和。
如果推断未获证明的猜想不是你的事,考虑考虑某些数也许是。但不要再犯哈迪的错误:早早地就把出租车号斥为无趣的。前不久我乘机远行。当我为一本小说所吸引住时,邻座那位坐卧不安的同伴笨嘴拙舌地试图激起谈兴:“我们乘坐的是407号飞机。对我来说,这个数似乎很枯燥,我希望它不是个凶兆。”
“胡说,”我从书中抬起头来答道,“这个数字一点也不枯燥,相反,它非常有趣。它是等于其各位数3次方之和的最大的3位数。”那人直盯着我,好像我是个疯子,但他拿出一张便条开始不停地草算起来。他做了一路的计算,而我却可以不受打扰地读完我的小说。