返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
第五章 制作复活节大彩蛋
结构进行模拟,因此他认为,只要稍加修正,它就可以模拟鸡蛋。雷施回忆说:“当我承接这项工作时,我曾以为,在人类历史上,一定有人研究过理想鸡蛋的数学。”他指望,通过对鸡蛋数学与他的几何学模拟加以比较,能够分析判断出这项模拟令人满意的程度。

    然而,雷施很快发现,在文献中没有关于鸡蛋的理想公式。对于许多已有名称的形状,文献中不仅含有代数式,而且还有作图的方法。以圆形为例,它很简单,是一平面上所有与该平面内某点等距离的各点集合。要作一个圆,可把一根细线的一端环绕系在一支铅笔上,另一端用图钉固定在一张纸上。绷紧细线,并使铅笔直立在纸上,环绕着图钉转动铅笔,结果就画出一圆形。在某一点上,扭转摆动甚至能使这个简单作图过程成为人们的笑料,在这个问题上,我曾从数学家马丁·加德纳那里听到:“妈妈,妈妈,为什么我总是绕着圆形走?”“闭嘴,孩子,不然我把你的另一只脚也钉死在地板上。”

    从圆形到球形则是很容易的一步,想象把孩子的一只脚(或者细线的一端)钉死在三维空间中的一点上,然后沿四面八方转动小孩挺直的身体(或者绷紧的细线端上的铅笔),观察小孩头部(或者铅笔尖)所画出轨迹的形状,换句话说,你可以把球形看成是急速旋转圆形所扫过的形状。

    当然,鸡蛋更接近于椭球形(它是急速旋转椭圆形所扫过的形状),而不是球形。即使是疯狂的数学家也不可能用快速旋转小孩的方法产生出一个椭圆形,但是,利用一支铅笔和一根用图钉固定其两端的松弛细线,就能很容易地画出椭圆形。

    鸡蛋不同于椭圆形,其一端比另一端粗些,但是,这种不对称性并不意味着它不能用数学式表示。的确,这要回溯到17世纪,法国学者雷内·笛卡尔(“我思故我在”)就曾探索过卵形曲线的代数式。两个世纪以后苏格兰的数学物理学家詹姆斯·克拉克·麦克斯韦,继续进行笛卡尔的工作,扩大了他的研究成果,麦克斯韦曾以他的定量证明电与磁属于同一种现象而出名。当时,麦克斯韦只有15岁,他曾向苏格兰早期科学协会——爱丁堡皇家学会递交一篇关于卵形的论文。论文是被热情接受了,但是,令人敬畏的学会却拒绝让这位小人物就这个论题向他们说教,从而错过了一个引人注目的场面,即用铅笔、细线、图钉并以小小的技巧就能画出卵形曲线图。

    雷施的主要问题是,虽然你曾见过一个鸡蛋,可是你却未曾见过所有的鸡蛋。鸡蛋在形状上都略有不同,他有责任辨明鸡蛋的理想形式。经过一个时期的挫折之后,他同农业部联系,并收到了一本鸡蛋分级手册。“我认为,”雷施说道,“手册里肯定有鸡蛋的定义。然而我发现,它全部是标明A、AA、B和BB的图片。最后,我终于归结出一个可似称为理想鸡蛋的形象。于是,我给它拍成照片,然后在我的计算机程序中把它数字化。”雷施和两名研究生昼夜工作了6个多月,想把折叠纸结构转变成为一个蛋形物。可是,所得到的结果都被否定了。“我们不知道错在哪里,是计算机程序有误呢,还是几何图形不对,或是数学计算出了差错?”

    类卵形的作图

    将细长线的一端固定在B点上,然后两次环绕铅笔和一次环绕A点的图钉。最后把另一端系在铅笔上。绷紧细线,就可以画出卵形的上半部。而后倒转细线和铅笔组合,就可以画出卵形的下半部。

    雷施抛开他的计算机程序,把曾经为他很好地服务了20多年的折叠纸技术搁置一边,再整个从头开始。他的方案是,把复活节彩蛋处理成好像一种三维的拼图玩具,由许多平面砖以微小的角度变化连接在一起,拼成彩蛋,从理论上讲,拼图的平面砖可以有各种不同的构型,而达到预期的目的,然而,雷施所需要的不仅是数学上的解法。雷
上一页 书架管理 下一页

首页 >阿基米德的报复简介 >阿基米德的报复目录 > 第五章 制作复活节大彩蛋