第五章 制作复活节大彩蛋
施所用的平面砖必须进行加工,出于经济上的考虑,重要的是那么多的平面砖在形状和大小上应尽可能地一样;那样就可以出自同一模子了。
在二维中,用瓷砖拼成棋盘格子状,图形的平面完全由平面砖(直线形的)不重叠地覆盖着,这种图形历史悠久,而且丰富多采。早在3世纪时,亚历山德里亚的天文学家帕普斯就对蜂巢的几何结构感到惊奇,这种结构已被认为是蜜蜂在建造六角形(六边形)巢室时具有的“某种几何学上的深谋远虑”。在蜂巢中,由六角形镶嵌的平面可以节省蜂蜡,因为两个巢室可以共用一个巢壁。而且,帕普斯认为它的绝妙处还在于没有外来物质能够进入(蜂巢室)间隙中,从而不会弄脏(蜜蜂)酿出的蜜。帕普斯还观察到,除了正六角形之外,在正多边形中(所有边、角相等的直线图形),只有正方形和等边三角形可以角对角地贴面铺在平面上,然而,对于蜜蜂来说,六角形的优点,是因为它在一定的周长内能够包容最大的面积。换句话说,在这3种等边图形中,只有正六角形才能以最少的蜂蜡消耗装进最大数量的蜂蜜。
我们容易相信,帕普斯并没有忽略任何一种可以在平面上贴砖的正多边形。关键条件是这些多边形能够排满一个顶点周围的空隙。要做到这一点,分别需要有6块正三角形面砖、4块正方形面砖和3块正六角形面砖。这3种多边形能够包围着一个顶点,是因为他们的内角(三角形为60°,正方形为90°和六角形为120°)能够除尽360°。其他的正多边形则不具有这种性质。例如正五边形,其内角为108°,所以在一个顶点周围铺贴3块正五角形面砖,平面上尚留有36°未能贴满。
六角形蜂房的优点:在所有二维图形中,给予一定的周长后,圆形含有最大的面积。但是它不适合于蜜蜂的巢室,因为在各个圆形之间,将有许多空隙浪费掉。六角形的另一种优点则来自它们的共用邻边。6个外围的六角形可以产生一个“免费”的内六角形,因为内六角形的每边都是共用的,然而 6个外围圆形却不能产生一个“免费”的内圆形,因为这些圆形没有共用的圆周,所以内圆形必须另行绘出。由6个外围六角形的共用邻边所形成的“节约”,则更为微妙。6个外围六角形仅由5个六角形的周边长度构成。7个圆形是的的确确的7个圆形,而5个六角形实际上可以形成7个六角形。
三种规则面砖的贴砖
如果放宽要求,那么可以在贴砖中使用一种以上的正多边形面砖,但所有的顶点都应该一致(即在顺序方面,贴在任何一个顶点周围的正多边形面砖都要与任何其他顶点一样),因而还可能有另外的8种贴砖方式。无论你是喜欢用数学的分析方法,或是喜欢从经验上的判断,既可以通过纸上谈兵式的分析,也可以通过对浴室地板花样的综合调查,你会相信,不可能还有其他的贴砖方式。
到现在为止,我们所论述的贴砖方式全都是规律性的,它们都像壁纸那样,是重复的。每一种贴砖方式都含有一块“籽砖”,即贴砖中的最小单元,从总体上看,贴砖都是它的多次复制。如果你有一块籽砖的橡皮图章,那么你可以重复地使用它,只要上下或左右地移动,不需要转动它,就能做出整个贴面。在只由一种正多边形面砖(正三角形、正方形和正六角形)组成的3种贴砖方式中,籽砖显然是正多边形本身;蜂巢式的贴砖是由一个正六角形产生的。方形的贴砖是由一个正方形产生的,而三角形的贴砖则是由一个等边三角形产生的。荷兰艺术家 M.C.埃歇尔就是以他的规律性贴砖方式而著名,他的贴砖通常都不是正多边形,而是这类或那类的动物。
贴砖的要求
至于非规律性的贴砖方式,则不复杂。画出一张方形贴砖图。设想把每块方形面砖沿其对角线分为两个直角三角形