第六章 麦比乌斯分子
时,他用形状像一架3级梯子的分子合成。(梯子的每级实际上是一个碳-碳的双键,这里可以忽略掉。)然后使梯子环绕着弯曲,再把两端连接,使其实际上形成一个环状物。
环形物中一半仅仅是一条环形带,而在另一半,当它两端连接时,将半截扭转,从而形成一条麦比乌斯带。
麦比乌斯带分子与麦比乌斯纸带一样,都具有许多神秘的性能。如果3个碳双健全部断开,那么分子仍然还是单个分子。碳双键的断开,相当于沿着纸带的中线环绕着把麦比乌斯带分成两半。对于分子和纸带两者来说,结果都是单带,只是其周长为原来的两倍。
化学家们很早就已知道,两种化合物可以有同样的分子式(即由同样化学成分严格地按同样比例组成的化合物),但却以性质不同的化学实体存在。如果同样的化学成分以不同的方式或以不同的角度相互键合时,这种现象就可能发生。然而,两种具有同样分子式的化合物,甚至具有同样的化学键,其在化学性质上也可能不同。怎么会有这种可能呢?
一门叫做拓扑学的数学分支学科可以解释这种现象。它是研究物体在不断发生变形时其性质仍然保持不变的数学学科。设想某物体是由柔性橡胶制成。拓扑学家想要知道,当物体受到推拉但不戳破或撕裂时,什么性质仍然保持不变。可用麦比乌斯带这个实例形象地说明这种抽象概念。假设你有一条橡胶的麦比乌斯带,你可以用一切可能的方法使它伸缩。不管你用多少种方法也都不能使它变形,最后得到的形状总是只有单面。因此,只有单面的性质就是拓扑学家们所关心的事。当一种形状能够连续变形成为另一种形状时,从拓扑学上看,两种形状被认为是等价的,所以,不管把麦比乌斯带伸缩成什么形状,从拓扑学的定义来说,它们也都是等价的。
现在考虑两条麦比乌斯带,一条用橡胶带朝某一方向扭转而成,另一条也用橡胶带但朝相反方向扭转制成。
从拓扑学上看,这两条麦比乌斯带是否等价?它们不等价。两者都不可能变形成为另一种形状。如果你从镜子里看这两条带子中的一条,那么你会看到,其映像很像另一条带;两条带互成镜像。
这里我必须停下来发表一项否认声明,以避免数学家们来信恶意攻击。数学家们都是一群怪人,拓扑学家们都不把自己局限在三维空间之中。而在四维空间中,他们却能证明,镜子里的麦比乌斯带可以互相转变。然而我仍将坚持把我们的讨论限于三维之内,因为我们探究的主要对象分子的形状总是在三维中观察到的。因此,我要重申,在三维中,镜像的麦比乌斯带从拓扑学来看是截然不同的。
成分一样而且化学键相同的两种化学化合物为什么会有性质截然不同的实体,关键在于从拓扑学上看,可能存在着截然不同的镜像。
因为右手和左手都是众所周知的镜像,所以人们习惯地把与其镜像相反的物体称为左手的或右手的。在一对镜像物中,究竟哪一个叫做像,是一个习惯问题。这正如街道的右侧不存在绝对位置一样,它取决于你行走的方向。两种麦比乌斯带已被人们称为右旋和左旋的麦比乌斯带,但是不必担心何者右旋,何者左旋。分子也存在右旋和左旋形式,人们称它们为手性,它是从希腊词“手(Cheir)”借用来的。
右旋和左旋麦比乌斯带都是镜像形状的实例,从拓扑学来看,它们在性质上是截然不同的,但有着等价的镜像形状。现以一简单图形为例,一个圆形是它本身的镜像,显然,从拓扑学上看,圆形与它本身是等价的。
另一个例子是字母R及其镜像Я。若用软橡胶制成图形R,那么可以用拓扑学的变形方法把它变换成为它的镜像。
可是,分子不是软橡胶制成的,物理的约束力防止它们以任何方式发生变