第六章 麦比乌斯分子
。只是我们没有让手套充分变形。如果我们使劲拽开手套,那么至少在理论上能够把手套变形成为一个圆盘的形状,这时手套就具有反射对称性(沿任何直径方向都有反射对称性)。
以上讨论的要点是,沃尔巴在化学方面的一些研究已向拓扑学家提出一个重要问题:如果某种形状在变形过程中不可能具备反射对称性,那么是否可以得出结论,从拓扑学上看,形状本身与其镜像不等价呢?这是一个基本问题,但在数学文献上,好像还没有人提出来过。
这个问题整个都牵扯到一个重要的哲学问题:物理科学上的新概念是否常常会启迪出数学上的新概念?或者反之?换句话说,何者在先,是物理科学,还是数学?许多哲学家遇到过这个问题,这与众所周知的关于鸡和蛋何者在先的问题一样,答案看来是不会令人满意的。
在这两种情况下,人们所得出的结论,似乎不是一个不可置否的证据,而是一个目的性的试验。一些步柏拉图后尘的专横数学家断言,他们的学科是与物理学实际相脱离的。他们认为,即使没有可供计数的物体,数字也会存在。不大固执的数学家们则承认,科学与数学是紧密相连的,但他们坚持数学在先。他们提出群论作为证据,群论是数学的一门分支学科,在19世纪30年代诞生,它完全没有物理学上的用途,只是最近才被粒子物理学家应用,以便用于研究过去20年内发现的亚原子粒子集。
但是,物理学家们则相信他们的学科在先,而且认为历史是站在他们一边。例如伊萨克·牛顿创造了数学中著名的分支学科微积分,就是因为他当时需要一种数学工具,用来分析极小的空间与时间间隔。而我认为,数学与科学都相得益彰,才是惟一公正的结论,尽管这种判断既不鼓舞人心,也不增进知识。麦比乌斯带的故事就是数学与物理科学之间错综复杂相互促进关系的一个很好的实例。1858年的论文竞赛中提出的麦比乌斯带仅仅创立了纯数学,现在它在化学中发展起来,而且已被化学家们熟练地运用,又为纯理论的数学家提出许多问题。
你可以感到欣慰的是,麦比乌斯带不仅可以服务于化学家,而且也可以服务于工业家。B.F.古德里奇公司已经获得麦比乌斯输送带的专利权。在普通输送带中,带的一侧会有较多的磨损与撕裂。而在麦比乌斯输送带中,应力可分布到“两侧”,从而可以延长其使用期一倍。