第七章 遗漏了的带一把手的三孔空心球形问题
能作为无自身相交的其他无限小曲面的模型。同一年,巴西数学家卢奎西奥·豪尔赫则证明了,带有3孔、4孔或5孔和不带把手的空心球形都不能成为适宜的模型。
霍夫曼说道:“由于在所有特殊情况下都已排除了新极小曲面的存在的可能性,许多人认为,而且试图证明没有新的例子能够存在。他们未能获得成功,但是大家却有一种共同的感觉,认为他们未能成功不是因为他们在无效地试图证明实际上是错误的东西,而是由于他们没有足够先进的数学工具。”
1983年11月,霍夫曼获悉,一位名叫塞尔索·科斯塔的巴西研究生,在其博士论文中讨论了提及的曲面的疑难方程问题。科斯塔已能证明无限的、极小的曲面在拓扑学上可与带一把手的3孔空心球形相同。
但是,科斯塔和其他任何人都不知道提及的曲面看起来像是什么,因为定义曲面的方程似乎都是相当复杂。况且,也没有人知道曲面是否本身相交。如果该曲面要加入平面、无界悬索曲面和无界螺旋面的极小曲面的神圣行列,那么它是不容许本身相交的。
自身相交的问题不是一个简单的问题。霍夫曼解释说:“当你有一组曲面方程时,你不能计算出某些量,说‘是,它自身相交’或‘不,它自身不相交’。而从本质上说,你只能证明曲面的某一块不能与另一块相交。”然而,对于一个无限曲面,这是远远不够的,因为你还必须与无数块曲面相比较。
霍夫曼计划使用计算机去计算曲面核心部分的坐标,然后绘制出曲面核心图。但是,常规的计算机制图学软件爱莫能助,因为它们所包括的主要是工程师们使用的立方形、球形和其他现有的形状,而不包括自身相交或扩展成无限大等奥秘的数学曲面。碰巧,他又获悉,美国马萨诸塞大学研究生詹姆斯·霍夫曼开发了一种计算机图形学的新软件。
戴维·霍夫曼说道:“我们的对策计划是使用计算机观察面。如果我们看到了它们自身相交,那么我们打算发表一篇有关这个实例的简短论文,排除该曲面可能是无限小曲面的看法。也许我们必须在一本低等的杂志上发表,因为在数学杂志上很难发表这类问题的否定结果。要是我们看不到它们自身相交,那么我们也不知道我们要做什么,只能说证明曲面本身不相交的工作实在太难了。”
然而,计算机生成的图形使他们的预料落空。它不仅显示出自身不相交,而且还显示出具有高度的对称性。它含有两条成直角相交的直线。霍夫曼在从不同角度“观看”曲面核心并经过长期艰苦的思考后,终于认识到曲面可以分解成为相同的8块。
在物理学中,眼见为实;而在数学中,就不够了。霍夫曼和米克斯看到了对称图形之后,把图形搁置一边,仅根据方程就证明了曲面本身不相交。出乎他们意料,竟然发现了第四种无限小曲面,这种曲面由两个悬索曲面和一个平面构成,整体像从“瑞士硬干酪心”中发出来似的。3个月后,他们证实了存在着无限多的这种曲面,每一个曲面在拓扑学上都与带几个把手的3孔空心球形等价。
在霍夫曼和米克斯发表第一个新曲面核心的图片之后,英国剑桥大学的一位生物学家就和他们联系,他认为,发育中的胚胎可能呈现这种形状。最小面积曲面往往会自然地存在于有机与无机材料之间的界面中,因为这样的曲面可使表面张力降到最低程度。美国纽约市的一位牙外科医师打电话给霍夫曼,并且说明该图形看来正好像他们用于移植在假牙上固定假牙的骨质物,霍夫曼说,他认为“极小曲面的破坏性较小,因为它与骨质物的接触面较小。而且,还有许多‘把手’为骨质物履行使命”。
即使极小曲面在现实世界中未得到应用,而霍夫曼与米克斯的发现仍然是不朽的。不过它却暴露出有关无限小曲面的最新知识