返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
第九章 威利·洛曼无辜地死去了吗?
员责怪其程序中的错误时,他的意思是指在编写详尽算法或把算法译成计算机语言时,他犯了一个错误。

    必须强调的是,算法的用户不管是一部机器还是一个人,不需要对算法做出判断。例如,加法算法的使用,不需要“什么是数字”这一概念。要应用算法时,你可以盲目地按照法则进行。比方说,你不必知道,5是跟在4之后,7是大于3等等,甚至你也不必知道你是在使用十进制的数制。哲学文献中已有许多篇幅谈论过,就计算机的思考能力而言,缺乏判断会意味着什么。但是,探讨这样一个引人兴趣的说法则使我们离题太远了。

    数学家们都不大关心旅行推销员这一专题。对于一系列较小的城市与公路网络,由于没有多少可能的路线需要审查,因而找到解法是很容易的。甚至对于大的城市与公路网络,那也可能幸运地或者偶然地找到最佳的路程。当数学家们宣称某问题实际上是不可解时,他们的意思是,仅仅知道保证解法的许多方法,就像穷举搜索所有可能性的方法一样低效,即使对于最高级的超级计算机来说,这种穷举搜索法也是太慢的。

    数学的行家对于快速(与可用)的算法和慢速(与不可用)的算法都有严格的确定方法。假设数字n是某问题大小的量度(对于旅行推销员问题,n是城市与公路数目的量度)。对于快速的算法,随着计算问题规模的增大,完成算法所需的时间的增长不会大于n(表示计算规模)的某个多项式。多项式是一种数学函数,诸如2n(加倍)、3n(3倍)、n2(平方)、n3(立方)、3n10和64n100等。而对于慢速的算法,例如用于解旅行推销员问题的穷举搜索法,则其执行时间将按问题规模增加的指数增加,即2n、6n或12n等。

    当n的值小时(也就是说,对于简单的问题),已知的多项式函数可以等于甚至超过已知的指数函数,但是当n的值大时,任何指数函数都将迅速地超过任何多项式函数。例如,当n等于2时,多项式函数n2等于4,它等于指数函数2n。但当n等于10时,n2只等于100,而2n却会像火箭上天那样猛增到1,024。毫无疑问,指数函数的增加会大大超过多项式函数的增加,这曾使托马斯·马尔萨斯感到忧虑,因为他发现人类的人口是以指数函数增长的,而与之相比,食物的供应则只以多项式函数增长。

    解旅行推销员问题,仅有已知的一种方法是按指数减慢的方法,即审查所有可能旅程的方法,这一事实意味着,在当今这个年代里,我们已不能对看来如此简单的问题有真正的了解。综合性理论学家总想试图证明这个迷惑人的猜想:不管我们如何努力尝试,我们对它都不会有任何了解,因为它就是不能理解的。

    看来与旅行推销员问题似乎有点相似的许多问题,数学家们对它们已经有所了解。例如,请考虑,一位公路检查员,他负责检查某段公路网,旅行推销员可能就在这段公路网上驱车。这位检查员渴望回家去看妻子和孩子,他想知道,是否有一条来回的路程,只须经过每条马路一次,只经过一次。但他并不关心城市,他只是想自己能走过公路的每个路段,而且还不重复。而从另一方面来说,旅行推销员却不关心公路,他只想去每个城市,每个城市只去一次,这样可把其汽车里程减到最短。

    伦哈德·欧拉1736年的研究工作,轻而易举地回答了公路检查员的问题。欧拉是一位29岁的普鲁士数学奇才。原普鲁士城市柯尼斯堡(现为苏联城市加里宁格勒)位于普雷盖尔河的两岸,并且包括克尼霍夫岛以及河流岔口中部的一块狭长陆地。城市的4个区域由7座桥梁的网络连接起来。

    据说,伊曼纽尔·坎特习惯于环绕城市进行长路程的保健散步运动,而且居民们也都想知道,是否可能有一条进行散步的来回路线
上一页 书架管理 下一页

首页 >阿基米德的报复简介 >阿基米德的报复目录 > 第九章 威利·洛曼无辜地死去了吗?