返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
第九章 威利·洛曼无辜地死去了吗?
,可以穿过所有7座桥梁,而每座桥梁只能穿过一次。由于桥梁的数目很小,这个问题可以用列举所有可能路线的方法(否定的方法)去求解,也就是说采用类似于旅行推销员这个小问题的、没有预见性的穷举法。

    这个问题由多产数学家欧拉去解,欧拉是一位有13个孩子的父亲,同时还著有80本书的数学研究成果。传说,许多研究报告都是在第一次与第二次叫他去吃饭之间的30分钟时间内写出来的,他预见性地证明这种路程问题无解。数学的灵魂大力提倡分析最普通的例子。因此,欧拉不仅想为柯尼斯堡的居民,也想为各地喜欢桥梁散步的人们解决问题,他试图解答一个普遍性的问题:“有若干河流及其分支穿过某一地区,并在其上架设任意数量的桥梁,已知河流与桥梁的布局,求是否有可能在每座桥梁只穿过一次的情况下,穿过所有的桥梁。”如果你把陆地区域看成城市,把桥梁看成公路,那么你就可以认为,这个一般性问题与公路检查员所面临的问题相同。

    为了解柯尼斯堡桥梁问题,欧拉用几何线表示每座桥梁,用几何点表示每块陆地。

    在这幅图中,欧拉已把问题简化成基本线条,去掉了所有无关紧要的内容。比方说,线与点的表示无法区别桥梁是宽还是窄,是特定的桥梁还是连接同一陆地区域的其他桥梁,是大块陆地还是小块陆地,乃至是岛屿还是河岸等。这些区别也许在其他方面非常重要,但与穷举的非重复性散步方法无关。这是一种漂亮的数学表示法:它仅需要在手边保留那些有关的情况,从而使数学家免受枝节问题的干扰,更能集中注意力于问题本身。

    欧拉已能证明,只有当点(陆地区域)为0或2,形成的线(桥梁)为奇数时,才可以进行穿过所有桥梁的非重复散步。你只要稍加思考就可支持这一结论。如果你穿过一座桥梁到另一处陆地去,必须还有一座桥梁让你离去,否则你将被困在那里。大片陆地需带有偶数桥梁才能确保那里有一条进去的路,另有一条离去的路。要是大片陆地只带有奇数的桥梁,那只有在旅程的终点(在那里你不需要一座桥梁离去)和旅程的起点(在那里你不需要一座桥梁进去)才有可能进行非重复的旅行。由于只有一个起点和一个终点,因此只有两处陆地才能有奇数的桥梁。在柯尼斯堡,4处陆地区域的每一处都连接了奇数的桥梁,即使没有比较严格的来回旅程条件,那么完全的非重复散步显然是不可能的。

    欧拉关于任意数桥梁与任意数陆地区域的结论要比归纳成普通的常识重要得多,认识到这一点很重要。我们的推论只是简要地说明,如果欧拉所断定的条件不能够满足,则非重复的旅行将是不可能的。欧拉的结论是很强有力的,直观上却不是很明显的:他证明了,如果这一简单条件得到满足,也就是说,当陆地区域数为0或2,而且连接它们的桥梁数为奇数时,非重复的行程总是可能的。

    要把欧拉的分析应用于一般情况,需要数出每处陆地区域的桥梁数。由于每座桥梁都要连接两处陆地区域,因此桥梁要两倍计数。如果桥梁数为n,那么欧拉的分析需要2n个步骤。桥梁的计数可以作为一种算法列出公式,而且它将成为一种非常有效的算法,因为虽然问题变得越来越复杂,演算所花费的时间却仅多了一倍。而从另一方面看,所有可能旅程的穷举搜索法则将成指数地迅速增长为2n。

    在旅行推销员问题中,对效率很低的穷举搜索法仍无简捷的方法。比方说,你仍不能计数出连接于每条公路的城市数,并根据这些数是奇数还是偶数来做出某种结论,或者就此而言,也不能根据这些数的其他性质得出结论。而且,这还不仅是我们不知道寻求那些性质的问题。还有可能是这些性质本来就不存在。这正是综合性理论学家都在努力证明的问题。

    旅行推销员问题不
上一页 书架管理 下一页

首页 >阿基米德的报复简介 >阿基米德的报复目录 > 第九章 威利·洛曼无辜地死去了吗?