返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
第十二章 数学中的民主
攻击他,那么他在游戏第一阶段中的惟一目标就是在第二阶段中增加他与本的一对一的对抗,而不是与阿尔对抗。查理聪明的手腕已使他获胜的机会增加了0.6%,因而对阿尔来说获胜的机会现在是38.1%,对本来说则为25.7%,对查埋来说则是36.2%。不过这还不是最后的定论。如果阿尔扩大了他的威胁面,从而使查理不再向空中掷镖,那么局面就会变得愈加奇妙。

    这个问题是对策论中诸多问题中典型的一个。其基本前提是每位参赛者都是有理性的,而且都是力图为自身利益考虑。这个问题的一项教益在于,显而易见的策略——每位参赛者都试图除掉较强的对手——并不一定是好策略。这就是我认为解法是反直觉的解释。当然,由于你更进一步地投身于对策论,那么你的直觉就会改变,而且如果它是完全意想不到的话,则意想不到的局面就会更加意想不到。气球战的另一项教益是,在缺乏有关参赛者能否联络、共谋、进行威胁或达成有约束力并可以实施的协议等信息的情况下,对可能的解法是不能进行正确评估的。在对策论中,往往需要了解这样的社会学因素。

    无须试图进行严格的论证,我们就能很容易地理解,气球战可能类似于政治或经济的竞争。按照纽约大学政治学教授斯蒂温·布拉姆斯的看法:气球战的知识可以扩展到多位候选人的政治竞选上,诸如1984年新罕布什尔州的民主党总统预选,当时有8个候选人竞选。布拉姆斯说道:“看来这些候选人的最佳战略,莫过于在他的部分政治势力范围内追随最强的对手。如果你是一个自由主义者,而且另外还有两位自由主义者,那么你就要追随最强的一位。于是所发生的情况将是两位最强的对手就会彼此攻击,而且最弱者就会存留下来了。”这时,如果所发生的情况全面出现,那么最弱的候选人就会在其政治势力范围内幸存下来。布拉姆斯说:“这是没有办法的,强有力的候选人会在这类竞选场合中崭露头角。”

    1951年,美国经济学家肯尼思·阿罗令人信服地论证:任何可以想得出的民主选举制度可能产生出不民主结果,这一论证使数学家和经济学家感到震惊。阿罗这种令人不安的对策论论证立即在全世界学术界中引起了评论。

    1952年,后来在经济科学方面获诺贝尔奖的保罗·赛缪尔森这样写道:“它证明了探索完全民主的历史记录下的伟大思想也是探索一种妄想、一种逻辑上的自相矛盾。现在全世界的学者们——数学的、政治的、哲学的和经济学的——都在试图进行挽救,都试图挽救阿罗的毁灭性发现中能够挽救出的东西,对数学政治来说,这一发现就是1931年库尔特·哥德尔的数学逻辑的不可能证明一致性定理。”

    阿罗的论证,称之为不可能性定理(因为它证明了完全民主在事实上是不可能的),该论证已帮助他于1972年获得了诺贝尔经济科学奖。对策论中最早的和最惊人的成果之一,也就是阿罗的“毁灭性发现”所产生的影响使人们至今还能感觉到。

    在民主投票中所固有的不民主悖论可以用一实例进行很好的解释。现有3位朋友,罗纳德、克拉拉和赫布,他们在辛苦工作一天之后,渴望吃一顿快餐。他们决定一起到3家餐馆(麦克唐纳、伯格王或温迪)中的一家去就餐。但3人不能取得一致意见。罗纳德渴望在麦克唐纳餐馆吃饭,那里有漂亮的分餐盘,里面装着油腻的汉堡包和大量新鲜的炸土豆条,至于其他两家餐馆,他喜欢伯格王,然后才是温迪。克拉拉想去吃牛排,因而他喜爱温迪胜过麦克唐纳,最后才是伯格王;赫布想吃大奶酪饼,因而最喜欢伯格王,最不喜欢麦克唐纳。

    这3位朋友决定用表决方法解决问题,首先在麦克唐纳和温迪之间选择,然后在取胜者与伯格王之间进行表决。如果罗纳德、克拉拉和赫布每人
上一页 书架管理 下一页

首页 >阿基米德的报复简介 >阿基米德的报复目录 > 第十二章 数学中的民主