第二章 数学结构和逻辑结构 5.群的概念
如果不从检验数学结构开始,就不可能对结构主义进行批判性的陈述。其所以如此,不仅因为有逻辑上的理由,而且还同思想史本身的演变有关。固然,产生结构主义的初期,在语言学和心理学里起过作用的那种种创造性影响,并不具有数学的性质(索绪尔学说中关于共时性平衡的理论是从经济学上得到启发的;“格式塔”学派的完形论学说则是从物理学上得到启发的),可是当今社会和文化人类学大师列维-斯特劳斯(Levi-Strauss),却是直接从普通代数学里引出他的结构模式来的。
另方面,如果我们接受在第一章里所提出的结构主义定义,那末最早被认识和研究了的结构,是由伽洛瓦(Galois)所发现的“群”的结构,这似乎是无可置疑的。并且这个“群”的结构在十九世纪逐步征服了数学这门科学。一个群,就是由一种组合运算(例如加法)汇合而成的一个若干成分(例如正负整数)的集合,这个组合运算应用在这个集合的某些成分上去,又会得出属于这个集合的一个成分来。还存在一个中性成分(在我们选用的这个例子里,是零),这个中性成分和另外一个成分结合,并不使这另一个成分发生改变(这儿是n+0=0+n=n;尤其是这里还存在一个逆向运算(在我们这个特定情况里,是减法),正向运算和逆向运算组合在一起,就得出那个中性成分来(+n-n=-n+n=0;最后,这些组合都是符合结合律性质的组合(这儿是[n+m]+l=n+[m+l])。
群结构作为代数基础,已经显示出具有非常普遍和非常丰富的内容。几乎在所有的数学领域里,并且在逻辑学里,我们都又发现了群结构。在物理学里,群结构具有基本的重要性;在生物学里,也可能会有一天情况相同。所以,力求明了这种成功的由来是很重要的了。因为群可能被看做是各种“结构”的原型,而且,在某些人们所提出的东西必须加以论证的领域里,当它具备了一些精确的形式时,群能提供最坚实的理由,使人们对其结构主义的未来,抱有希望。
这些理由中的第一条,是数理逻辑的抽象形式;群就是从中引出来的;这抽象形式,就解释了群的使用的普遍性。当有一个性质从客体本身经过抽象被发现出来以后,这个性质当然就向我们提供了这些客体的情况。但是,所抽象出来的性质越是具有普遍性,这个性质就越贫乏而有很少用处的危险,因为它对于一切都能适用。体现数理逻辑思维特点的“反映抽象”(abstraction reflece)的性质则不是这样,恰恰相反,它不是从容体里抽象出来的,而是从人们对于客体所加上的动作、并且主要地是从这些动作的最普遍的协调作用(coordination)之中抽象出来的;例如从汇集(reunir)、赋序(ordonner)和找出对应关系(mettre en correspondance)等等过程里抽象出来。然而人们在群中看到的,正好就是这些有普遍性的协调作用,首先就是:a)回到出发点的可能性(群的逆向运算);b)经由不同途径而达到同一个目的、但到达点不因为所经过的途径不同而改变的这种可能性(群的结合律性质)。至于组合(如汇集等)的本性,可以不受顺序的制约(可互相置换的群),也可以建立在必然的顺序上。
正因为这样,群的结构就成了一个确实有严密逻辑联系的工具,这个工具因内部的调整或自身调节作用而具有自己的逻辑。事实上,这个工具通过其自身的活动,使理性主义的三个基本原理发挥了作用:在转换关系的可逆性中体现了不矛盾原理;中性成分的恒定性保证了同一性原理;最后一个原理人们较少强调,但它同样是一个基本原理,就是到达点不受所经途径不同的影响而保持不变的原理。例如,在空间里位移的一个整体,就是