卷十三
说数理全没涉及美与善了。美的主要形式quot;秩序,匀称与明确quot;,这些惟有数理诸学优于为之作证。又因为这些(例如秩序与明确)显然是许多事物的原因,数理诸学自然也必须研究到以美为因的这一类因果原理。关于这些问题我们将另作较详明讨论。
章四
关于数理对象已讲得不少;我们已说明数理对象是存在的,以及它们凭何命意而存在,又凭何命意而为先于,凭何命意而不为先于。现在,论及意式,我们应先考察意式论本身,绝不去牵连数的性质,而专主于意式论的创始者们所设想的原义。意式论的拥护者是因追求事物的真实而引到意式上的,他们接受了赫拉克利特的教义,将一切可感觉事物描写为quot;永在消逝之中quot;,于是认识或思想若须要有一对象,这惟有求之于可感觉事物以外的其它永恒实是。万物既如流水般没有一瞬的止息,欲求于此有所认识是不可能的。当时苏格拉底专心于伦理道德的析辩,他最先提出了有关伦理诸品德的普遍定义问题。早先的自然学家德谟克利特只在物理学上为热与冷作了些浮浅的界说,于定义问题仅偶有所接触;至于毕达哥拉斯学派在以前研究过少数事物——例如机会,道德或婚姻——的定义,他们尽将这些事物连结于数。
这是自然的,苏格拉底竭诚于综合辩证,他以quot;这是什么quot;为一切论理〈综合论法〉的起点,进而探求事物之怎是;因为直到这时期,人们还没有具备这样的对勘能力,可不必凭依本体知识而揣测诸对反,并研询诸对反之是否属于同一学术;
两件大事尽可归之于苏格拉底——归纳思辩与普遍定义,两者均有关一切学术的基础。但苏格拉底并没有使普遍性或定义与事物相分离,可是他们〈意式论者〉却予以分离而使之独立,这个就是他们所称为意式的一类事物。凭大略相同的论点,这当然会引致这样的结论,一切普遍地讲述的事物都得有意式,这几乎好象一个人要点数事物,觉得事物还少,不好点数,他就故使事物增加,然后再来点数。通式实际已多于个别可感觉事物,但在寻取事物的原因时,他们却越出事物而进向通式上追求。对于某一事物必须另有一个脱离本体的同名实是,(其它各组列也如此,必须各有一个quot;以一统多quot;〈通式〉,)不管这些quot;多quot;是现世的或超现世事物。
又,所用以证明通式存在的各个方法,没有一个足以令人信服;因为有些论据并不必引出这样的结论,有些则于我们常认为无通式的事物上也引出了通式。依照这个原则,一切事物归于多少门学术,这就将有多少类通式;依照这个quot;以一统多quot;的论点,虽是否定〈quot;无物quot;或quot;非是quot;〉亦将有其通式;依照事物灭坏后对于此事物的思念并不随之灭坏这原则,我们又将有已灭坏事物的通式;因为我们留有已灭坏事物的遗象。在某些颇为高明的辩论中,有些人又把那些不成为独立级类的事物引到了quot;关系quot;的意式,另有些论辩则引致了quot;第三人quot;。
一般而论,通式的诸论点消灭了事物,这些事物的存在,较之意式的存在却应为相信通式的人所更予关心;因为相应而来的将是数〈二〉为第一,而不是两〈未定之二〉为第一,将是相关数先于数,而更先于绝对数。——此外,还有其它的结论,人们紧跟着意式思想的展开,总不免要与先所执持的诸原理发生冲突。
又,依据我们所由建立意式的诸假定,不但该有本体的通式,其它许多事物都该有;(这些观念不独应用于诸本体,亦得应用于非本体,这也就得有非本体事物的学术;数以千计的相似诸疑难将跟着发生。)但依据通式的主张与事例的要求,假如它们能被参与,这