返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
第十二章 数学中的民主


    B 6 汉道特 吉·乔

    C’ 2 汉道特 吉·乔

    E、D 9 吉·乔 汉道特

    这样的结果不太反常。回想一下,除了2位选民把汉道特从第二选择抬高到第一选择外,所有的选举意愿顺序都是一样的。这样就具有否定他的选举的效果。多隆和克罗尼克得出结论:“这简直太不公平,1位候选人落选了,是因为他(或她)得到的选票过多了。大多数选民可能会十分反感和愤怒,被转让了,他们听到假想的(但是理论上是可能的)选举之夜的报道:‘奥格雷迪先生在今天选举中没有获得席位,但是,如果在第二个地方而不是在第一个地方有5,000名支持者投他的票,那么他会反败为胜的!’”

    过多的选票能使一位当选者成为落选者这一反常的可能性,不仅仅是黑尔选举制的人为产物。美国电话电报公司贝尔实验室的数学家布拉姆斯和彼得·菲什伯恩在其合著的《认可的选举》一书中指出,它还可能困扰着类似于流行的相对多数选举这样的选举制,该选举制必然会产生2位得票最多的候选人之间的最后角逐。现在考虑3位候选人,马尔柯·迪拿芝、帕特里克·奥罗克、巴兹尔·杰斐逊,同时有17位选民,他们的选举意愿如下:组别 选票数 选举意愿(从最好到最差)

    A 6 迪拿芝 奥罗克 杰斐逊

    B 5 杰斐逊 迪拿芝 奥罗克

    C 4 奥罗克 杰斐逊 迪拿芝

    D 2 奥罗克 迪拿芝 杰斐逊

    如果所有的选民都诚实地投票,那么迪拿芝(得6票)和奥罗克(得6票)将进行角逐,最后迪拿芝当选,11票对6票。

    现在设想除了最后一组选民把迪拿芝从第二选择抬高到第一选择之外,其余的选举意愿均相同:

    组别 选票数 选举意愿(从最好到最差)

    A 6 迪拿芝 奥罗克 杰斐逊

    B 5 杰斐逊 迪拿芝 奥罗克

    C 4 奥罗克 杰斐逊 迪拿芝

    D’ 2 迪拿芝 奥罗克 杰斐逊

    在第一次投票中,迪拿芝(8票)和杰斐逊(5票)进行角逐,于是迪拿芝输了,8票对9票,因为奥罗克的4位支持者成为了杰斐逊的支持者,迪拿芝获得的支持虽有增加,但却反常地破坏了他的胜利。

    布拉姆斯还认为,在不需要最后角逐的简单多数选举中,候选人在预选投票中有何进展的公告也可以产生同样的反常效果。假定上述的第一组选举意愿中有两位D组选民喜欢选奥罗克而不选迪拿芝,投票的结果将通知杰斐逊的支持者,他们支持的候选人已处于最后一名。于是杰斐逊的支持者得到了信息,他们必须放弃他们支持的候选人,策略性地转投他们的第二选择意愿迪拿芝,迪拿芝因而将当选。假定上述的第二组选举意愿中,迪拿芝得到了D组选民的支持,投票结果将通知奥罗克的支持者,他们支持的候选人已处在最后一名。理所当然地,他们将转而支持杰斐逊。尽管迪拿芝也获得两位以上选民的支持,杰斐逊还是击败了迪拿芝。实际上,民意测验代替了第一轮投票,使实际选举相当于最后的角逐。

    多隆在另一篇论文②中指出,黑尔选举制的另一种困境是:一位候选人在两个单独选区内都可以获胜,而在两个选区的合并投票时却会落选。在多隆的例子中,1个候选人由4组选民选举。每个选区有21位选民,因此每个选区当选的定额是11票。

    在两个选区内,最初时无一人达到定额11票。在第一选区,汉道特得到倒数第一位的选票,被淘汰了,他的支持者的选票都转给阿蒂拉,使阿蒂拉得到11票当选。在第二选区,阿蒂拉从选票最低的候选人弗里拉夫处获得3票,成为当选者。

上一页 书架管理 下一页

首页 >阿基米德的报复简介 >阿基米德的报复目录 > 第十二章 数学中的民主